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Abstract 

A new metric system called the electron metric system, having a basic metric 
constant, is introduced. The connection between the electron metric system and 
the external metric system is defined. The symmetry relationships of the 
multinary semiconductor compound alloys are defined according to the electron 
metric system. The basic metric constant is found on the basis of a diatomic 
tetrahedral cell. The electron wave vector in the new system is found and the 
electron energy states are determined. Correlation is shown between the electron 
energy and the electron wave vector in the multinary crystal. The LCAO electron 
band structures of InxAl1-xN are presented. The phenomenon tunnel optical 
absorption is investigated in InxAl1-xN, in InxGa1-xN, in InN containing oxygen 
and in non-stoichiometric InN. It is found the optical absorption edges begin in 
energies much lower than the energy band gaps due to this phenomenon. 
Existence of excitons of the structure is shown in these semiconductors and it is 
found that the peaks of the PL spectra correspond to annihilation energies of 
these excitons. 
Keywords:  semiconductor compound alloys, optical properties. 

1 Introduction 

The relatively recent observation of 0.7 eV photoluminescence for InN, and of 
absorption features near this energy have been the subject of a number of recent 
papers [1–3]. It has been proposed that the low energy features indicate a 0.7 eV 
band-gap. However, the material had long been held to have a much higher 
band-gap of 1.9 eV. The large difference between these values is not presently 
understood. The Moss-Burstein effect does not explain the variation seen for 
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material of low carrier concentration, and Vegard’s law indicates that oxygen 
levels in the higher band-gap material are insufficient to account for the 
difference [4]. Sample inhomogeneity offers a strong possible explanation. The 
grown conditions are known to form non-stoichiometric indium nitride during 
the growth of nitride films. One now seeks to investigate the possibility that 
these low energy features arise as growth artifacts, due to an alloy formed by 
non-stoichiometric InN containing both single In substitutions on N sites and 
single N substitutions on In sites. 
     A new metric system called the electron metric system is introduced in this 
paper. The connection between the electron metric system and the external 
metric system is defined. The symmetry relationships of the multinary 
semiconductor compound alloys are defined according to the electron metric 
system. The electron wave vector in the electron metric system is found and the 
electron energy states are determined. Correlation is shown between the electron 
energy and the electron wave vector in the multinary crystal. LCAO electron 
band structure of InxAl1-xN is presented. The phenomenon tunnel optical 
absorption is investigated in InxAl1-xN, in InxGa1-xN, in InN containing oxygen 
and in non-stoichiometric InN. It is found the optical absorption edges in these 
semiconductors begin in energies much lower than the energy band gaps due to 
this phenomenon. Existence of excitons of the structure is shown in these 
semiconductors and it is found that the peaks of the PL spectra correspond to 
annihilation energies of these excitons.  

2 Metric system and symmetries in multinary crystal 

The existing metric system in the solid state physics is defined on the basis of 
positions of the ions building the crystal lattice. One can call it the metric system 
of the external observer or simpler external metric system. It does not account for 
the electron interactions. We will define the metric system in the multinary 
crystal in terms of electron interaction because it is the basis of the determination 
of the electronic and optical properties of solid state. One can call it the electron 
metric system. The definition will be done on the basis of the following 
assumptions:  

i) Every quasi-elementary cell (defined in [5] for multinary crystal) is 
built by points, which are identical with the corresponding points in 
all other quasi-elementary cells of the multinary crystal in term of 
electron propagator (The quasi-elementary cell doesn’t contain any 
other points.); 

ii) The quasi-elementary cell is electro-neutral; 
iii) The atomic substitutions in multinary crystal save the valences of 

the corresponding atoms;  
iv) The electrical charges are of point type and they are concentrated 

exclusively in the nodes of the crystal lattice; 
v) One electron approximation has place.  

Weyl’s metric system will be used [6, 7], i.e. the length is defined by 
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l = l0 exp(α∫Φi dxi)                                                     (1) 
 
where l0 is metric constant, α is proportional factor, Φi is component of the 
electric field, and xi is the coordinate in the external metric system (i=1,2,3). The 
integration takes place between two points of the external system and l is the 
corresponding distance in the electron metric system. One will define the metric 
length in the multinary crystal in term of change of electron energy when the 
electron moves in the electrical field of the crystal lattice formed by the electrical 
fields of the nuclei, i.e. 

l = l0 exp(α∫Єi dxi)                                                     (2) 
 
where Єi = Єi(xi) is the corresponding component of the electrical field strength. 
The coordinate li (i = 1, 2, 3) in the electron metric system can be defined using 
(2).  
     The integration in (2) between two nodes of the crystal lattice having equal 
electron charges is equal to zero, i.e. l = l0. Using this result one will define l0 to 
be the distance in the electron metric system between nearest neighbouring 
atoms of the crystal lattice having equal electron charges. Let us consider that we 
have tetrahedral quasi-elementary cell of a multinary semiconductor compound 
alloy and that this cell is built by two sorts of nuclei – cationic and anionic. Also 
let us consider at this point that the cationic sub-lattice is built by atoms of one 
chemical element, and to consider the same for anionic sub-lattice (however both 
cationic element and anionic element are different atoms). Due to the distribution 
of the valence electrons the cationic atom has charge +    |Z|, and the charge of the 
anionic atom is -|Z|. According to the assumption iv) given above these charges 
are concentrated exclusively in the nodes of the corresponding sub-lattices. The 
tetrahedral quasi-elementary cell contains cationic atom having charge +|Z| and 
anionic atom having charge -|Z|. The determination of the metric constant l0 for 
this tetrahedral cell will be done and one-electron approximation will be 
considered (Fig.1). (Only part of the diatomic tetrahedral cell is given in Fig.1. 
However this part is enough to represent the interactions and the corresponding 
lengths due to the symmetry of the tetrahedral cell. The electro-neutrality of the 
tetrahedral cell is saved.) 
     The one-electron Schrödinger equation is given by 
 

[-ћ2∆/2m + e2( |Z|2/(4 rAB ) - |Z|2/(2 rAC) -|Z|2/(2 rBC) - |Z|/(2 rA) - |Z|/(2 rB)  
+ |Z|/rC)]  ψ = E ψ                                                (3) 

 
where e is electron charge, m is electron mass, ψ is wave function in one-electron 
approximation, and E is electron energy. This equation is invariant in term of the 
metric system. Let’s consider that the electron metric system takes place, i.e. 

rAB = l0 
 
Because the following equality is valid  
 
 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 46,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Methods and Experimental Measurements XIII  77



Figure 1: Part of the tetrahedral cell containing all possible distances. 
 

                                  ∫Є dξ = 0                                                     (4) 

where ξA and ξB are the positions of the atoms A and B in the external metric 
system, and the integration in (4) takes place in the external metric system as 
well. Let’s consider the positions of the electron and of the atom C in the 
external metric system to be ξe and ξC respectively. One has found  
 
 

                                   rAC  = l0 exp(α∫Є dξ) = l0 exp(-3αe|Z|/2)                           (5) 
                                
  
Using (4) and (5) one has found  

rBC  = l0  exp(3αe|Z|/2) 
 
Let’s designate 
 

∫Є dξ = β 
 
 
Using this designation and expressions (4) and (5) one has found 
 

rA = l0  exp(αβ) 
rB = l0  exp(-αβ) 

rC = l0  exp(-αβ) exp(-3αe|Z|/2) 
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Considering the expressions for the distances found above the Schrödinger 
equation becomes  
 
{-ћ2∆/2m + e2 [ |Z|2/(4 l0)  - |Z|2/(2 l0 exp(-3αe|Z|/2) ) - |Z|2/(2 l0  exp(3αe|Z|/2)) 
– |Z|/(2 l0  exp(αβ) ) - |Z|/(2 l0  exp(-αβ) ) + |Z|/ (l0  exp(-αβ) exp(-3αe|Z|/2) ) ]} ψ 

= E ψ                                                         (6) 
 
The metric constant l0 is found as solution of (6) in the electron metric system 
assuming that ψ is ortho-normal wave function  
 

l0 = e2 /(Emin – H0)  [( |Z|2/4 - |Z|2/(2 exp(-3αe|Z|/2) ) - |Z|2/(2 exp(3αe|Z|/2) ) 
 

- |Z| H-β /2 - |Z| Hβ /2 + |Z| Hβ  / ( exp(-3αe|Z|/2) )]                   (7) 
 

Where the matrix elements H0, H-β and Hβ are as follows 
 

H0 = <ψ|-ћ2∆/2m|ψ> 
 

H-β  = <ψ| exp(-αβ) |ψ> 
 

and  
                         Hβ  = <ψ| exp(αβ) |ψ>                                          (8)   

 
It is important to mention that integration for finding β has a place in the external 
metric system, but the matrix elements are determined in the electron metric 
system. β has continuous values within the tetrahedral cell and these values are 
equivalent for all tetrahedral cells having equal |Z|, i.e. the matrix elements H-β  
and Hβ depend only on |Z|. Emin is the minimum of the electron energy in 
tetrahedral cell having |Z|. The authors believe there are other methods for 
determination of the metric constant l0.  
     The distances between two nearest neighbouring cationic is l0, also the 
distances between two nearest neighbouring anionic is l0 as well. 
     Important conclusions can be made:  
i) Tetrahedral cells containing two atoms and having the same values of |Z| have 
equal l0 or in a multinary semiconductor compound alloy the different quasi-
elementary tetrahedral cells containing two atoms and having equal values of |Z| 
have equal values of l0, i.e. the lengths of the tetrahedral edges are equal in the 
electron metric system.  
     ii) The electron wave function ψ(l) and the potential function U(l) of the 
multinary crystal have symmetry in the electron metric system that is the same as 
the symmetries of both  the electron wave functions ψ(x) and the potential 
functions U(x) of the binary constituents in the external metric system if |Z| 
remains constant for every quasi-elementary tetrahedral cell. (The binary 
constituents are building the multinary crystal.) 
     The binary alloys InN, GaN and AlN have values of |Z| - 1.56, 1.48 and 1.36 
respectively. (The calculations are performed on the basis of the polarities of 
these alloys given in [8]). The average value is |Zav| = 1.47. It means that it can 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 46,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Methods and Experimental Measurements XIII  79



be considered that |Z| = 1.47 for the quasi-elementary tetrahedral cells of 
InxGa1-xN, of InxAl1-xN and of GaxAl1-xN with error not greater than 7.5%, and 
the corresponding tetrahedral edge l0 in the electron metric system.  However 
this conclusion is made on the basis of the independent binary alloys that are 
possible binary constituents. The authors assume that a detail investigation may 
give constant value of |Z| without theoretical error.  
     The purpose of the electron metric system in this paper is to define the 
symmetry of the multinary crystal in term of crystal lattice and the corresponding 
symmetries of both the electron wave function and the potential function. Further 
development of this metric system and its application in the quantum mechanics 
of solids goes beyond the scope of this paper and it is subject of other author’s 
papers. 

3 Electron wave vector and electron states in multinary 
crystal 

The change of the metric system requires a new approach in the determination of 
the electron wave vector because the electron wave length has to be determined 
in the corresponding metric system. This problem will be solved on the basis of 
the following assumptions: 

i) The quasi-elementary tetrahedral cell is electro-neutral; 
ii) The electrons belonging to both the conduction band and the valence band 
have energies E greater than the potential energy U of the nuclei of certain 
quasi-elementary tetrahedral cell; 

Using these assumptions and the result in [9] one can write (kxi and kl are the 
electron wave vectors in the external metric system and in the electron metric 
system respectively, and n is positive integer number): 
- for the external metric system  
 

              (1/ћ ) ∫ {2m [E – U(xi)]}1/2 dxi = |xB – xA| kxi = n π                       (9) 
 
(|xB – xA| is tetrahedral edge)  
- for the electron metric system 
 

                         (1/ћ ) ∫ {2m [E – U(l)]}1/2 d l  = l0 kl = n π                         (10) 
 
The equations (9) and (10) give 
  

                                      |xB – xA| kxi = l0 kl = n π                                       (11) 
 
As a matter of fact the distance |xB – xA| determines the length of the tetrahedral 
edge of certain quasi-elementary cell in the external metric system (the 
tetrahedral edges of different quasi-elementary cells having |Z| have different 
lengths in the external metric system, and equal lengths in the electron metric 
system).  The equalities (11) have important meaning – they are basis of the 
following conclusions: 

xB 

l0

xA

0 
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1)         The electron wave length λl in the electron metric system stays 
unchanged when the electron is moving through different quasi-elementary 
tetrahedral cells and  
 

                                                λl = 2 l0 / n                                                   (12)   
 

2) The electron wave length λxi in the external metric system changes when 
the electron is moving through different quasi-elementary tetrahedral cells. 
3) The Bloch’s theorem is satisfied in the electron metric system. 
4) The number of electron states remains unchanged in different metric 
systems. (It means one can determine the electron states in the electron metric 
system and they give the corresponding states in the external metric system.) 
5) Considering that a sub-lattice of the multinary crystal is built by different 
sort of atoms one must expect that the electron energy corresponding to certain 
electron state depends on the quasi-elementary cell, i.e. the formula derived in 
[10] is valid. 
 

                                     E(r) = ∑q δ (r – Rq) E(q)                                      (13) 
 
where E(q) is electron energy in quasi-elementary cell having radius-vector Rq, 
and r is radius-vector. Both Rq and r can be determined in both metric systems, 
however the application of the electron metric system in calculation of the 
Hamiltonian matrix elements goes beyond the scope of this paper and the 
calculations of the corresponding matrix elements will be done in the external 
metric system furthermore according to the conclusion 4), which is given above, 
the determination of the electron states can be made in the electron metric 
system, and the calculation of the corresponding electron energies can be done in 
the external metric system (conclusion 5).  
     Calculations of LCAO electron energies for the electron state k=0 (i.e. point Γ 
of the electron band structure) will be presented for InxAl1-xN. (Details of these 
calculations are given in [5, 10].) Each type of quasi-elementary cell forms sector 
υ of the corresponding electron band structure (υ = 1, 2, 3, 4, 5). In terms of both 
the optical absorption and the photoluminescence the energy band gap of 
InxAl1-xN has to be determined as energy differences between Γυ

c1 (the bottom of 
the conduction band of sector υ) and Γυ

v15 (the top of the valence band of sector 
υ). The results of the calculations are given in Fig.2 for InxAl1-xN. The energy 
levels Γυ

c1 and Γυ
v15 are determined by taking the energy of the vacuum as being 

equal to zero. The energy difference Eυ
g = (Γυ

c1 - Γυ
v15) gives the energy band 

gap of sector υ. The shifts of the boundaries of the energy band gaps in Fig.2, 
and the corresponding energy intervals are due to defects in the crystal lattices of 
InxAl1-xN. The nature of these shifts is different from the nature of the shifts of 
the boundaries of the energy band gap described in [11, 12]. The same approach 
is used for determination of the energy states in InxGa1-xN [10], in InOyN1-y [5] 
and in non-stoichiometric InN [13].  
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Figure 2: The energy band gap of InxAl1-xN. The energies Γυ
c1 and Γυ

v15 are 
shown (the sectors are υ=1, 2, 3, 4, 5). The shapes of parts of the 
electron wave functions corresponding to both the initial i > and 
final statef > are given and the allowed optical absorption 
transition is shown. 

4 Electron and optical phenomena in semiconductor 
compound alloys related to InN 

4.1 Excitons of the structure in InxAl1-xN, in InxGa1-xN, and in InOyN1-y 

An exciton of the structure in InxAl1-xN is formed by an electron occupying state 
Γ3

c1 and a hole occupying state Γ4
v15 (Fig.2). This exciton state Γ3

c1 ↔ Γ4
v15 is 

defined as the ground exciton state for this type of exciton in InxAl1-xN. Using 
the method given in [10] the hydrogen like energy level En for the ground state 
(n = 1) is found to depend on the ratio between neighbouring Al cationic and 
neighbouring In cationic surrounding the quasi-elementary cells of sectors 3 and 
4 of Fig.2. It is found En varies in the interval 0.765 –0.778 eV and these 
energies are in agreement with the optical transitions corresponding to the 
experimental photoluminescence spectra of samples containing interface layers 
InxAl1-xN - ~ 0.77 eV reported in [2] and ~ 0.8 eV given in [3]. As a mater of fact 
En determines the optical transitions connected with photon radiation due to 
annihilations between the electrons and the holes belonging to the exciton Γ3

c1 
↔ Γ4

v15 in InxAl1-xN. Excitons of the structure in InxGa1-xN are investigated in 
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details in [10]. It is found that the hydrogen like energy level En varies over the 
interval 0.50 – 0.82 eV and these energies are close to the experimental results 
about the photoluminescence spectra of In-rich regions of InxGa1-xN reported in 
[14–16]. The same type of exciton in InOyN1-y is investigated in details in [5]. It 
is found that the hydrogen like energy level En varies over the interval 0.84 – 
1.01 eV, and that it determines the optical transitions connected with photon 
radiation due to annihilations between the electrons and the holes belonging to 
these excitons in InOyN1-y. The photoluminescence rates in InxAl1-xN, in 
InxGa1-xN and in InOyN1-y depend on the concentration of the corresponding 
excitons of the structure, and this in turn depends on the technological 
circumstances forming this alloys. 

4.2 Tunnel optical absorptions in semiconductors related to InN  

The tunnel optical absorption in InxAl1-xN, in InOyN1-y, in InxGa1-xN is 
investigated in details in [5].  The basis of this phenomenon is the overlapping 
between the electron wave function | i > of the initial electron state and the 
electron wave function of the final electron state | f > in term of optical transition. 
Part of the graphics of figure 2 provides the electron wave functions of the initial 
state i > and of the final state f > for InxAl1-xN (it is important to note that the 
state i > is an electron state, it is not a hole state). It is found [5] the lengths (in 
the one-dimensional case) of the regions where the matrix element of the optical 
absorption has non-zero values due to the penetrations of the electron wave 
functions into the barriers. The length for InxAl1-xN is determined to vary in the 
interval 4.70 – 4.72 Angstrom depending on the number of In and Al atoms 
surrounding the sectors 3 and 4 (Fig.2), the length for InxGa1-xN is determined to 
vary in the interval 4.61 – 4.64 Angstrom, and the length for InOyN1-y is found to 
vary in the interval 1.98 – 2.00 Angstrom. The conclusion is made [5] that the 
optical absorption transitions Γ4

v15→ Γ3
c1 for InxAl1-xN and Γ3

v15→ Γ4
c1 for 

InxGa1-xN are allowed and they give the optical absorption edges and the 
corresponding energy band gaps (for InxAl1-xN Eg=Γ3

c1-Γ4
v15 and for InxGa1-xN 

Eg=Γ4
c1-Γ3

v15). The similar conclusions are made for InOyN1-y as well. It is 
important to note that if the distances between the corresponding quasi-
elementary cells (forming the sectors) are longer than the lengths of the regions 
determined above the optical absorption transitions given above will not be 
allowed). The optical absorption rates depend on the number of Γυ

v15→ Γξ
c1 pairs 

for InxAl1-xN, for InOyN1-y and for InxGa1-xN in the corresponding primitive 
super-cells that are connected with the technological circumstances (growth 
conditions) forming the layers InxAl1-xN, InOyN1-y and InxGa1-xN. The energy Eg 
for InxAl1-xN is found to vary in the interval 1.58 – 1.62 eV, the energy Eg for 
InOyN1-y is found to have a small variation around 1.19 eV, and the energy Eg for 
InxGa1-xN is found to vary in the interval 1.40 – 1.56 eV. These energies 
(especially the energy Eg ~ 1.19 eV for InOyN1-y) are close to the optical 
absorption edge that shows the optical transmission data for the Ioffe sample 
W431. The tunnel optical absorption in non-stoichiometric InN:In is investigated 
in details in [13]. It determines energy band gap Eg = 0.2 eV. (However the 
single substitutions In atom on N site do not reduce the energy band gap to zero.)  
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5 Conclusion 

The development of the electron metric system and its application in calculations 
of the electron band structure of multinary crystal has an important impact over 
the investigation of the disordered atomic systems. In fact, the calculations of the 
Hamiltonian matrix elements can be done in this metric system and the authors 
believe these calculations to become easier and more accurate. The observed 
phenomena excitons of the structure and tunnel optical absorption can be used in 
design of semiconductor devices on InN and related alloys.  
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