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Abstract 

It is important to be able to accurately predict the behavior of high-explosive 
(HE) materials because of the sensitivity with which they respond in the 
environment in which they are designed to perform, and because they are also 
extremely sensitive to accidental mechanical shock, which might occur during 
handling.  Thus it is imperative that a capability exists to develop a constitutive 
material model and simulate the response of HE materials subjected to a variety 
of thermomechanical loading conditions, a response that is characterized as 
highly complex.  It has been demonstrated through uniaxial strain-rate 
experiments conducted at the Los Alamos National Laboratory (LANL) that the 
initial response of HE material is rate-dependent, with the growth of microcracks 
continuing under load until the yield strength is reached.  In a material such as 
this, the initial stages of deformation involve both elastic and viscous 
mechanisms.  It has been postulated that this observed behavior could be 
categorized as nonlinear viscoelasticity, coupled with continuing microcracking.  
A computational material model containing viscoelasticity, internal damage 
accumulation and rate-dependent plasticity has been formulated for the purpose 
of simulating the behavior of these types of material systems.  The formulation 
has been incorporated as a user-defined material (UMAT) into the ABAQUS 
finite element code.  It is demonstrated in this paper how the material model can 
be employed by calibrating it to the experimental response of the material Mock 
900-21, a high-explosive material mock utilized at LANL. 
Keywords: computational, viscoelasticity, damage, fracture mechanics, 
plasticity, user material model. 
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1 Introduction 

It is important to be able to accurately predict the behavior of HE materials 
because of the sensitivity with which they respond in the environment in which 
they are designed to perform, and because they are also extremely sensitive to 
accidental mechanical shock, which might occur during handling.  Thus it is 
imperative that a capability exist to model the response of HE materials 
subjected to a variety of thermo mechanical loading conditions, a response that is 
highly complex, requiring sophisticated material modeling to simulate. 
     It has been demonstrated through uniaxial strain-rate testing conducted at 
LANL that the initial response of HE material, along with the yield strength, is 
rate-dependent, with the growth of microcracks continuing under load until the 
yield strength is reached.  In a material such as this, the initial stages of 
deformation involve both elastic and viscous mechanisms and are truly 
viscoelastic.  It has been postulated that this observed behavior could be 
categorized as nonlinear viscoelasticity, coupled with continuing microcracking.  
However, since it is extremely difficult to obtain experimental data to support 
current nonlinear viscoelasticity theory, and since internal damage accumulation 
modeling has been successfully employed in numerous circumstances in lieu of 
nonlinear viscoelasticity modeling [1], a linear viscoelasticity/damage approach 
has been taken here in modeling the behavior of the HE material.  Also, since 
certain HE materials have been observed to exhibit flow characteristics 
subsequent to reaching the damage-controlled yield stress, an applicable 
plasticity theory is presented and developed. 
     The theory presented herein is used to develop a UMAT subroutine for the 
ABAQUS implicit finite element code.  Mock materials are developed to 
simulate the laboratory response of HE materials because the mock materials can 
be conventionally tested whereas the HE materials usually cannot be. The 
developed UMAT is calibrated for Mock 900-21, a mock material for the high-
explosive material PBX 9501, and uniaxial tests performed on Mock 900-21 are 
simulated.  The calibrations are described in detail and simulation results are 
compared with test results. 

2 Model formulation 

The time dependence of microcrack growth in polymeric materials has been 
studied extensively, both theoretically and experimentally, for quite some time.  
The linear viscoelasticity/damage formulation presented here is based primarily 
upon the work of Addessio and Johnson [2].  During deformation, the 
distribution of microcracks in the material is assumed to be random, with the 
initial distribution being exponential. 

2.1 Linear viscoelasticity/damage 

Using Cartesian tensor index notation, strain is given by the kinematic 
relationship 
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where the iu  are the material deformation variables.  It can be decomposed into 
deviatoric and mean components 

                   ijmijij e δεε +=                                                (2) 

where ijδ  is the Kronecker delta; the mean strain is defined by 

                      iim εε
3
1

=                                                      (3) 

The stress can likewise be decomposed into deviatoric and mean components 
                      ijmijij s δσσ +=                                                 (4) 

where the mean stress is defined by 

                             iim σσ
3
1

=                                                      (5) 

and is related to the mean strain through the expression 
                            mm Kεσ 3=                                                     (6) 

where K  is the bulk modulus of the material. 
     In a deviatoric Maxwell model, a single spring and dashpot in series, the 
relationship between stress and strain is 

  e
ijij Ges 2=                                                      (7) 

where G is the shear modulus, and the relationship between stress and viscous 
strain rate is 

  v
ijij es η2=                                                      (8) 

where η is the viscosity of the dashpot and where the dot over the variable 
indicates the time rate of change of the variable.  Taking the partial derivative of 
Equation (7) and combining the result with Equation (8), i.e. adding elastic and 
viscous strain rates, gives 

  
τ

ijve
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s
eGs −= 2                                              (9) 

where the relaxation time τ  is given by 

                 
G
ητ =                                                        (10) 

     For the viscoelastic solid, represented by a generalized deviatoric Maxwell 
model, with the strain being common for all elements of the model and the 
stresses for the individual elements being additive, i.e. 

                              ∑
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where N is the number of elements in the generalized Maxwell model and 
)(n

ijs is the deviatoric stress component for the n th element, the relationship 
between the deviatoric stress rate and the viscoelastic deviatoric strain rate and 
the deviatoric stress, referring to Equation (9), is given by 

  )2( )(
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n
ijve
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n

n
ij

s
eGs

τ
−=∑
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                                      (12) 

where )(nG and )(nτ are the shear modulus and relaxation time, respectively, for 
the nth Maxwell element. 
 The cracking deviatoric strain versus deviatoric stress relationship, see 
Addessio and Johnson  [2], is 

                              ij
cr
ij sce 3β=                                              (13) 

where c is the value of the average microcrack radius and β  is a parameter that 
relates the shear modulus to the initial flaw size through the expression  

                              
32
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where a is the limiting crack size and 
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Combining Equations (13) and (14) yields a relationship between the deviatoric 
strain and the average crack radius 
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Taking the partial derivative of Equation (16) with respect to time gives the 
expression 
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     The total deviatoric strain, the sum of the viscoelastic deviatoric strain and the 
cracking deviatoric strain, is given by 

  cr
ij

ve
ijij eee +=                                                (18) 

Combining Equations (12), (17) and (18) gives an expression for the deviatoric 
stress in terms of combined viscoelastic and microcracking response: 

                    )( ijijijij ses λθψ +−=                                        (19) 
 where 
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and 
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 The expression for the deviatoric stress rate for the nth Maxwell element 
is given by 
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2.2 Fracture mechanics 

The application of fracture mechanics to time-dependent materials is relatively 
new [3].  An evolution equation defining crack growth rate is required.  
Consistent with traditional fracture-mechanics reasoning, and following the 
observations and conclusions of Dienes [4], it is assumed that the growth rate of 
the average crack radius is functionally dependent upon the stress intensity.  The 
equations below are from Dienes [5] and Dienes and Kershner [6], with 
modifications for tension and friction provided by Johnson [7].  The cracking 
rate is either 
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where 
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where νres is the value of the rate of growth of the average crack radius Ko is the 
threshold value of stress intensity, m is a cracking parameter and µs is the static 
coefficient of friction.  
     For the N-component Maxwell model, the viscous work rate is 
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and the cracking damage work rate is   
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Employing the constitutive model formulation presented, the incremental form 
of the equations, facilitating a computational solution, will be developed.  
Combining Equations (4), (6) and (19) yields the expression 

ijijmmijij eK θλψεθεσθσ −++=+ )(3            (34) 
Rearranging Equation (34) somewhat yields the expression 

   xxxxVVxxxx KK θλεψεψεθσθσ −+





 −+=+

3
       (35) 

for the global x-direction on a plane x = constant, with similar expressions for 
the y- and the z-direction, and 
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               (36) 
for the x-direction on the plane y = constant, with similar expressions for the y- 
and the z-direction, where 
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The factor of 2 in the denominator in Equation (36) indicates that the strains are 
engineering. 
     Applying the central difference operator to Equations (35) and (36) yields 
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where ∆ indicates incremental change, so that the Jacobian matrix D  then has 
the terms 
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crack growth.  In a simulation of a uniaxial strain-rate test, the value of resv is 
changed until the yield stress of the simulation matches that of an actual test run 
at the same strain-rate.  This procedure is repeated for a test run at a different rate 
of strain until a wide range of strain-rate tests have been covered.  This results in 
a collection of say five data points, each of which relates a value of resv  to a 
given value of strain-rate.  A log-log plot of these data can usually be expected to 
yield a linear relationship between log ( resv ) and the log of the effective strain 
rate (for three-dimensionality) where the effective strain rate is given by 
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where the strains are engineering and where υ , Poisson’s ratio, is given by  
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2.3 Plasticity 

Plasticity theory adaptable to computational modeling is generally well 
developed [8, 9].  An example of combining damage growth and plasticity is 
reported by Khaleel et al. [10], and the coupling of yield surface to damage is 
discussed by Johansson and Runesson [11].  The yield condition modeled herein 
is basically the flow rule of von Mises’ theory, the well-known Prandtl–Reuss 
relationship [12].  The effective plastic strain increment p

effε∆  is defined by  
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and where H is the hardening (or softening) modulus.  The Prandtl–Reuss 
relationship states that plastic strain increments { }pε∆  result when the effective 

plastic strain increment occurs under the state of stress{ }Q , i.e.  

            { } { } p
eff

p Q εε ∆=∆                                             (48) 
The corresponding stress increments are obtained from the relationship 
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where 

{ } { }zxyzxyzzyyxx σσσσσσσ ∆∆∆∆∆∆=∆ ,,,,,                   (50) 
     It is assumed that, consistent with plasticity theory in general, the hardening 
modulus depends on the strain and the strain rate [13]. The dependence upon 
strain rate is expressed as a shift function with regard to a basis value of strain 
rate. It has the form 
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where 0
effε is the basis value of strain rate and 1s and 2s are constants to be 

determined from curve fitting.  The dependence of the hardening modulus on 
strain is expressed as 
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Figure 1: Log compressive (left) and tensile (right) Young’s modulus versus 
Log relaxation time for Mock 900-21. 

3 Application 

The formulation thus presented has been used to develop a User MATerial 
Subroutine (UMAT) for the ABAQUS implicit finite element code.  Mock 
materials are developed to simulate the response of HE materials because the 
mock materials can be conventionally tested whereas the HE materials usually 
cannot be.  For example, Mock 900-21 is designed to simulate the strength and 
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density properties of the high-explosive material PBX 9501.  The 
theory/formulation described herein is applied to Mock 900-21 for the purpose of 
validating the material model. 

Figure 2: Log compressive (left) and tensile (right) Young’s modulus versus 
Log relaxation time for Mock 900-21. 

Figure 3: Relationship between log of rate of growth of crack radius and log 
of effective strain rate in compression (left) and tension (right) for 
Mock 900-21. 

     Compressive strain rate data were obtained from tests conducted by Cady 
[14], and tensile strain-rate test data were obtained from tests conducted by 
Thompson [15].  Compressive tests were for rates of 0.001, 0.01, 0.1 and 1.0 per 
second.  Tensile tests were for rates of 0.00001, 0.0001 and 0.001 per second.  
These tests were used exclusively to determine the viscoelastic, damage and 
plasticity parameters employed in the material model to predict the response of 
the Mock 900-21. Each set of uniaxial strain-rate data was converted from a true 
stress versus true strain data set to a Young’s modulus (Pa) versus relaxation 
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time (sec) data set.  The relaxation time was obtained by dividing strain by strain 
rate.  Each of these data sets was then converted to a log Young’s modulus (Pa) 
versus log τ (sec) data set.  These data are shown plotted in Figure 1.  Fitting the 
upper-most data points in Figure 1 yields expressions for the compressive 
relaxation modulus and the tensile relaxation modulus, respectively.  
     With a value of Poisson’s ratio of 0.30, and 10 generalized deviatoric 
Maxwell model elements, each separated by a decade of relaxation time, as 
shown in Figure 2, the linear viscoelastic models for the material are established.   
     It was found, and is thus noted, that the elastic/viscoelastic material properties 
for Mock 900-21 are different in compression and tension.  For the compressive 
strain-rate tests, using the procedure described earlier, a linear relationship 
between log )( )resv and log )( effε was established for Mock 900-21.  This is 
shown in Figure 3.  The yield behavior of Mock 900-21 in compression and in 
tension is also quite different, as one might expect.  For tensile strain-rate tests, 
again using the procedure described earlier, a relationship between resv and 

effε was established; this relationship is shown in Figure3.  The numerical values 

of the plasticity parameters found in Equations (51) were 5
1 4.0322 10s x −= − , 

3
2 1.1178 10s x −= sec-1, and 0 0.001effε =  sec-1, and the values of those found in 

Equations (54) were 3
1 4.7863 10a x=  Pa, 6

2 6.1878 10a x=  Pa, and 
9

3 2.1976 10a x=  Pa. 
     Finally, comparisons between model predictions and test results are shown in 
Figures 4 and 5, Figure 4 for compressive loading and Figure 5 for tensile 
loading. 
 

Figure 4: Uniaxial compressive stress-strain relationship for Mock 900-21: 
(a) test data, (b) simulation.   
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Figure 5: Uniaxial tensile stress-strain relationship for Mock 900-21: (a) test 
data, (b) simulation. 

4 Conclusions   

Results obtained from the analyses performed using this material model for the 
Mock 900-21material indicates that the model performs satisfactorily.  Since 
Mock 900-21 exhibits flow characteristics subsequent to reaching its damage-
controlled yield strength in tension, the plasticity theory developed for 
computational modeling in conjunction with the coupled viscoelastic/damage 
model was applicable to this material.  
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