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Abstract 

The PKAIN algorithm is an artificial immune network, which has been designed 
to optimize parameters of linear pharmacokinetic models in our previous work. 
In this paper, the algorithm is modified to optimise parameters of nonlinear 
pharmacokinetic models. To evaluate parameters, the numerical inverse Laplace 
method is adopted to calculate drug concentrations of the dynamic system. The 
initial solutions of pharmacokinetic parameters are generated randomly by the 
PKAIN algorithm in a given solution space. Memory cells to be used in the 
search of global optimal parameters are generated. The optimal mechanism of 
the algorithm is based on artificial immune network principles and simplex 
mutation. In addition, a distributed version of the PKAIN algorithm is proposed 
to improve its efficiency.  
Keywords: pharmacokinetic model, distributed computing, artificial immune 
network, numerical inverse Laplace, simplex. 

1 Introduction 

The artificial immune system [1] is a novel soft computing paradigm, which 
simulates powerful abilities of biological immune systems in mutual action to 
defend against pathogenic organisms. Studies on the comparison of optimization 
performances between the artificial immune system and other heuristic 
algorithms [2], such as simulated annealing algorithm, genetic algorithm, and 
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evolution programming, have demonstrated that the artificial immune system has 
outstanding characteristics of population diversity and global convergence. 
Furthermore, the artificial immune network has been successfully used in multi-
modal function optimization [3], and dynamic environment optimization [4]. 
Various applications of the artificial immune network are currently being studied 
by various research groups. 
     In order to understand absorption, distribution, metabolization and 
elimination processes of a drug, a pharmacokinetic model is required to be built 
with suitable model parameters. Optimised parameters are usually determined 
through the use of observed drug concentrations after a period of time of 
applying the drug. Therefore the optimisation process is the most fundamental 
and important task in establishing a robust pharmacokinetic model. In our 
previous work, parameters of a linear compartment model are optimized [5]. 
First, the Laplace transform is applied to the linear compartment model. 
Analytical inverse Laplace transform is used to deduce the drug concentration 
function. The artificial immune network PKAIN was developed to optimise 
parameters of the concentration function. In contrast to Gauss-Newton and 
simplex methods, the PKAIN is capable of obtaining the global optimal solution 
and the process is insensitive to initial solutions. 
     In this paper, the PKAIN method is extended to optimise parameters of 
nonlinear pharmacokinetic models. Unlike linear compartment models, the 
concentration function of nonlinear pharmacokinetic model tends to be 
unavailable in its analytic form. Therefore the numerical inverse Laplace method 
is used to obtain discrete concentrations in a given temporal period for the given 
nonlinear model.  In order to optimize parameter, the PKAIN is modified as 
follows. First, fitness calculation integrated with numerical inverse Laplace 
method is developed. Second, a distributed version of the PKAIN algorithm is 
proposed to improve its efficiency.  

2 The artificial immune network for parameter optimization 
of nonlinear pharmacokinetics 

In the PKAIN algorithm, a set of parameters describing a given pharmacokinetic 
model is encoded into a memory cell of the artificial immune network. The 
procedure of the PKAIN artificial immune network for parameter optimization of 
nonlinear pharmacokinetics is described as follows. Initially, the memory cells of 
the artificial immune network are randomly generated in the solution space. For 
each cell, clone selection and mutation are used to generate new cells. The 
fitness of each cell is calculated by evaluating the ‘goodness’ of the set of 
parameters and are encoded into them. In the network suppression process, 
similar cells are deleted to maintain a relatively smaller network scale. Certain 
proportional cells with lower fitness are updated dynamically and a new 
generation of the network is generated. The network is allowed to evolve until 
certain stopping criterion has been achieved. Finally, the memory cell with the 
highest fitness is decoded and the optimal set of parameters of the 
pharmacokinetic model is obtained. In the following subsections, the fitness 
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calculation, clone selection and simplex mutation processes of the PKAIN are 
described.  

2.1 Fitness calculation 

Let { }1 2, , , lc θ θ θ=  denotes a set of l parameters describing a pharmacokinetic 
model.  A candidate solution of the parameters is encoded into a memory cell. 
The fitness of a network cell is related to an objective function which is used to 
evaluate the goodness of the cell. In the context of pharmacokinetic model 
optimization, it is a measure of how well the drug concentration computed by 
using the set of parameters of the model would fit with the observed drug 
concentration. The fitness is measured as a numerical value ranging from 0 to 1 
and the closer the fitness value is to 1 means that the better the set of parameters 
encoded in a memory cell is to fit the observation. Let ix , ni ,...,2,1=  be the drug 
concentration observed at time it  and iX  the calculated drug concentration using 
c for the nonlinear pharmacokinetic model, the fitness of a memory cell ( )cη , 
may be defined as follow: 

2

1 1

( ) 1 ( ) / ( )
n n

i i i i
i i

c w x X x xη
= =

= − − −∑ ∑ ,           (1) 

where x is the average observed drug concentration. iw  is set to the value 1, 
otherwise ix/1 , or 2/1 ix when ix  exhibits  a wide range of values. 
     Consider the nonlinear pharmacokinetic model of which the drug 
concentration ( )i iX X t=  is required： 

)()()( tfXHXA
dt
dX

++= ，                 (2) 

where )(XA is a linear function of X , )(XH is a nonlinear function of X , and )(tf  
is a known function of t . To obtain numerical solutions of the nonlinear 
pharmacokinetic model, the iterative coefficient-inverse Laplace method (ICIL), 
which was successful used in our previous work [6] for nonlinear Black-Scholes 
equations in financial computing, is adopted. 
     At each time step, a linearization of the nonlinear term )(XH is obtained by 
computing )~(XH  using the approximation X~ , which is updated within an iterative 
update process in order for X~  to converge to X~ . Each step of the iterative 
update process involves a numerical solution to the equation, 

)()~()( tfXHXA
dt
dX

++= ,               (3) 

where Laplace transformation may be applied easily. Let pX  and 1+pX  be the 

numerical solutions of eq. (3) at ptt =  and 1+= ptt  respectively. Also let 
)(λU and )(λF  be the Laplace transforms of X  and )(tf  respectively, where λ  

is the parameter introduced after taking the Laplace transform.  Applying the 
Laplace transform to eq. (3), being defined in the time interval ],[ 1+∈ pp ttt , in its 
differential form leads to 

)0(),/(])(/)~([)( ≠−−++= AAXFXHU p λλλλλ  
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     The iterative update process to obtain the numerical solution 1pX + , using pX  
as the initial approximation to X  and assuming m parametric functions of 

)( jU λ , 1, 2,...,j m= , is described in the ICIL algorithm as below. 
 
FUNCTION to find 1pX +  

Initial approximation: ( 0 )
1p pX X+ =  

//Iterative Inverse Laplace Method in ],[ 1+∈ pp ttt  
k=0; 
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END-FUNCTION 

2.2 Clonal selection and simplex mutation 

The clonal selection process of an artificial immune network is a computational 
implementation of the clonal selection principle in solving optimization 
problems, emphasizing multimodal and combinatorial optimization [7]. The 
process of clonal selection is composed of clone, mutation and selection steps. In 
the clone step, identical off springs of memory cells are generated. Then new 
cells are created through the mutation step. The PKAIN algorithm executes clone 
and fitness-based mutation steps as below. 

)1,0(Nccnew α+=                                             (4) 

( ) *1 exp( ( ))cα ηβ= −                                           (5) 

where newc  is a new memory cell mutated from the cell c , (0,1)N  is a Gaussian 
random variable of zero mean with deviation 1=σ . The mutation factor α  is 
inversely proportional to the clone constant β . *( )cη is the normalized fitness of 
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the cell c . In this case, cells with low fitness mutate heavily so that they have 
many chances to be better than their parents to improve the diversity of the 
population. On the contrary, cells with higher fitness mutate relatively little to 
reserve their priority. 
     In order to improve local optimal capability, the simplex mutation is designed. 
In the classical simplex method, a simplex is constructed by its 1+L  vertices in 
the L  dimensional Euclidean space. Then, through a sequence of elementary 
geometric transformations (reflection, contraction, expansion and shrinking), the 
initial simplex moves, expands and contracts. In such a way that it adapts itself 
to the function landscape and finally surrounds the optimum [8]. Since the 
simplex method is an excellent method for local optimization, it has been used 
with other searching techniques in a hybrid fashion. Yen et al. [9] developed a 
variant of the concurrent simplex method which begins with Ω+L  points, where 

1>Ω , instead of 1+L  points as in the classical simplex method.  
     In this paper, a partition-based concurrent simplex mutation is examined. The 
new cells newc  generated by the clone and mutation steps of the clonal selection 
process for a given memory cell c  are considered as a natural partition group. 
The number of simplex mutated cells is denoted as cN , 1+> LN c . After executing 
the concurrent simplex method to obtain newc , there are LN c −  number of new 
cells that have been updated. The partition-based concurrent simplex mutation is 
described as the following steps. 
 
(1) Order 
Order the cells of newc  to satisfy 
 1( ) ... ( ) ... ( ) ... ( ), 1, 2,...,

cL L i N cc c c c i N Lη η η η+≥ ≥ ≥ ≥ ≥ ≥ = − .  
Calculate the centroid of L  number of cells with higher fitness values, 

Lcccc L /)...( 21 +++= . 
 
(2) Reflection 
For each iLc +  cell, compute the reflection point rc  by using 

)( iL
r cccc +−+= ρ         (6) 

Calculate the fitness ( )r rcη η= . If 1( ) ( )r
Lc cη η η< < , accept r

iL cc =+  and 
terminate the operation. 
 
(3) Expansion 
If 1( )r cη η≥ , expand the point rc  to ec  by using 

)( iL
e cccc +−+= ρχ           (7) 

Calculate the fitness ( )e ecη η= . If e rη η> , accept e
iL cc =+  and terminate the 

operation; otherwise, accept r
iL cc =+  and terminate the operation. 
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(4) Outside Contraction 
If ( ) ( )r

L i Lc cη η η+ < < , compute the outside contraction point oc  as 

  )( iL
o cccc +−+= ργ                      (8) 

Calculate the fitness ( )o ocη η= . If o rη η> , accept o
iL cc =+  and terminate the 

operation. 
 
(5) Inside Contraction 
If ( )r

Lcη η<  and ( ) r
L icη η+ ≥ , compute an inside contraction point ic  as 

  )( iL
i cccc +−−= γ              (9) 

Calculate the fitness ( )i icη η= . If ( )i
L icη η +> , accept i

iL cc =+  and terminate 
the operation. 
     There are coefficients of reflection ( ρ ), expansion ( χ ), and contraction (γ ). 
The usual choices of these coefficients are 5.0,2,1 === γχρ . The shrinking 
operator of the classical simplex method is replaced with the mutation step of the 
clonal selection process. 

3 A distributed PKAIN method 

In order to obtain numerical solution of eq. (3) accurately by means of a 
temporal integration method, temporal intervals 1[ , ]p pt t + should be small. 
Unfortunately, concurrent computation of all time steps in a temporal integration 
method is impossible. It seems that to achieve a distributed algorithm to yield a 
de-coupling of the original problem is almost impossible.  However in the ICIL 
algorithm,  the numerical solutions , 1, ...,pX p N=  may be computed concurrently 
and, thus, the total computational time of becomes significantly reduced. 
     In this paper, we examine a two-level temporal decomposition method which 
stems from our previous work of concurrency in time domain computation [10, 
11]. Assuming the N temporal steps of serial calculation are equally divided into 

coarseN  parts, each represents a coarse temporal interval T∆ . In the secondary 
temporal decomposition, each T∆  is divided into fineN  parts of finer temporal 
intervals t∆ , tNT fine ∆=∆ . . First, a number of numerical solutions of the 
nonlinear equation, using the concept of the Laplace transform and its iterative 
inverse, are obtained on a coarser temporal mesh, ],[ 1 pp TTt −∈ , 

}N,{1,p coarse…∈ . Second, each coarse temporal mesh ],[ 1 pp TTt −∈  can be 
decomposed into several finer temporal meshes 1 1[ , ]p p it T T t− −∈ + ， 

}1,{1,i fine −…∈ N . The numerical solutions on the coarser temporal mesh 
obtained in the former step are used as initial conditions on the finer temporal 
mesh. Solutions defined on a finer temporal mesh for each of the coarse temporal 
mesh are now being obtained concurrently using a temporal integration method. 
This linearization leads to a distributed version of the fitness calculation process 
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for the PKAIN. Suppose the fitness calculation can be distributed into p  
processors, the pseudocode of the fitness calculation is described as below. 
 
FUNCTION Distributed fitness calculation 
 Decode the network cell c  into parameters. 
 FOR coarseN    TO   1p = , do coarser temporal mesh on ],[ 1 pp TTt −∈  
  Find pX  from 1pX − ; 
 END-FOR 
 Distribute 1N    TO   0p coarse −= ， pX  to processors， 
 For 1N  o  1i fine −= T , do finer temporal mesh on [ , ]p p it T T t∈ +  
  Find p iX +  from ( 1)p iX + − ; 

 END-Distribute and receive p iX + . 

 2

1 1
1 ( ) / ( )

n n

i i i i
i i

w x X x xη
= =

= − − −∑ ∑  

END-FUNCTION 

4 Experiments and discussion 

A typical nonlinear pharmacokinetic model for drug concentration is often 
described by Michaelis-Menten equation. In this section, the PKAIN algorithm is 
used to optimize Michaelis-Menten pharmacokinetic parameters of the bolus 
intravenous examples 1 and 2 as described in [12]. Optimal parameters are 
compared to the solutions given by the accurate linear regression (ALR), 
improved Hanes-Woolf method (HW), and combined Runge-Kutta method (RK-
PS) in the literature.  
     The equation of drug concentration described by Michaelis-Menten equation 
consists of two parameters is given as follow. 

  XK
XV

dt
dX

m

m

+
−=                                           (10) 

Table 1:  Comparison of optimal parameters for example 1. 

Method mK  mV  R  
PKAIN 10.907 4.016 0.042690 
HW 10.5135 3.9615 2.260105 
ALR   9.3936 3.9573 0.293910 
RK-PS   9.9804 3.9994 0.111829 

 
     In other words, candidate solutions of { , }m mc V K=  are encoded into memory 
cells. Optimal parameters for example 1 obtained by PKAIN, ALR, HW, and 
RK-PS methods are shown in Table 1. Optimal parameters for example 2 are 
shown in Table 2. In order to compare these parameters, the relative residual 
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∑ −= )/)(( 2
iii xXxR is calculated. The smaller the weighted residual is, the better 

the parameters are. The results demonstrated that the PKAIN method 
outperforms HW, ALR, and PK-PS algorithms in parameter optimization of 
nonlinear pharmacokinetic models. 

Table 2:  Comparison of optimal parameters for example 2. 

Method mK  mV  R  
PKAIN 33.2223 13.4414 1.5718282 
HW  28.0806 11.2978 9.292684 
ALR 27.5851 11.2828 8.509200 
RK-PS 29.5126 13.0842 1.817844 

5 Conclusions 

In this paper, the artificial immune network PKAIN is designed to optimize 
nonlinear pharmacokinetic parameters. The method to obtain numerical solutions 
of nonlinear system is integrated into its fitness calculation process. 
Experimental results obtained by the PKAIN algorithm are better than those 
obtained by HW, ALR, and PK-PS methods. Together with our previous work, 
the PKAIN algorithm is capable of obtaining optimal parameters for both linear 
and nonlinear pharmacokinetics. In addition, the two-level temporal 
decomposition method is used to parallelize the nonlinear pharmacokinetic 
model using an iterative inverse Laplace transformation. The efficiency of the 
PKAIN algorithm can be greatly improved when it is implemented in a 
distributed environment due to the fact that there is no data dependence of the 
fine temporal mesh computation. 
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