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Abstract

Idiopathic intracranial hypertension (IIH) is a syndrome of unknown cause char-
acterized by elevated intracranial pressure (ICP). A stenosis of the venous sinus
is observed in many patients suffering from IIH. The role that this feature plays
in the etiology of IIH has been a matter of dispute. A lumped-parameter model
of intracranial pressure dynamics that accommodates venous sinus stenosis via a
Starling-like resistor has been developed to study the etiology, diagnosis, and treat-
ment of IIH. In the absence of the Starling-like resistor, the system has a unique
asymptotically-stable steady-state with normal pressures. With this type of resistor
present, a second, asymptotically-stable steady-state may exist. This state is char-
acterized by elevated ICP concurrent with a compressed venous sinus. It is hypoth-
esized that IIH is a physiological manifestation of this elevated steady-state, that
the primary cause of IIH is a compressible, as opposed to rigid, venous sinus, and
that the observed stenosis is a necessary characteristic of the elevated steady-state.
Simulations suggest a possible diagnostic technique for IIH, and the efficacy of
various treatment options is examined. Results also indicate that the venous sinus
stenosis may persist even after treatment has reduced the elevated ICP of IIH.

1 Introduction

Idiopathic intracranial hypertension (IIH), also called pseudotumor cerebri and
benign intracranial hypertension, is a syndrome of unknown cause characterized
by elevated intracranial pressure (ICP) without evidence of ventricular dilatation,
mass lesion, or dural sinus thrombosis. It presents with symptoms of headache,
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nausea, vomiting, papilledema, and visual obscurations [1]. In most patients suf-
fering from IIH, a stenosis or tapering of the lateral sinuses is observed by mag-
netic resonance venography or retrograde catheter venography [2–6]. Prior to the
present modeling effort, the role played by venous sinus stenosis in the etiology of
IIH has been unresolved and a matter of some dispute.

A lumped-parameter model of intracranial pressure dynamics is utilized to
explore the relationship between IIH and lateral sinus stenosis. In previous mod-
els of this type [7–10] the sinuses have been considered rigid so as to withstand
the negative transmural pressure normally endured by these vessels. In the present
work, the model in [9] has been modified so that this assumption is no longer made.
Specifically, the resistance to venous sinus drainage is formulated so as to be sen-
sitive to transmural pressure changes. This modification now allows for partial
collapse of the lateral sinuses in the face of elevated ICP with a resulting increase
in resistance to venous sinus drainage.

2 The lumped-parameter model

A diagram of the lumped-parameter model that has been enhanced for this study
is shown in figure 1. Previously, this model has been used to study steady-state
intracranial pressures in microgravity [9]. A brief description of the model is given
below. A full description that includes calibration of the normal parameter values
is given in [9].

2.1 Features of the mathematical model

Cerebral blood flow (QIC) and CSF formation by the choroid plexus (QCF ) are
considered constant in the current application. Filtration from the intracranial cap-
illaries across the blood-brain barrier (QCB) is modeled by the Starling-Landis
equation involving both hydrostatic and osmotic forces. All other flows are related
to pressure differences by

Qij = (Pi − Pj)/Rij = Zij(Pi − Pj), (1)

where Qij is the flow from compartment i to compartment j , Pi and Pj are
the spatially-averaged pressures of compartments i and j respectively, Rij is the
lumped resistance, and Zij is the fluidity (inverse of Rij). Volume adjustments
between adjacent compartments are related to changes in pressures by local com-
pliance parameters Cij = Cji. Applying the law of conservation of mass in
compartments I,C,S,F,B, and T results in a set of governing differential equations
defined in matrix form by

C
dP

dt
+ Z P = Q, (2)

where P = [PI , PC , PS , PF , PB, PT ]tr, C is a compliance matrix, Z is a fluidity
matrix, and Q is a vector of forcing terms that involves extra-cranial pressures and
known flows. The matrix equation (2) may appear to be linear, but entries in the

 © 2007 WIT PressWIT Transactions on Biomedicine and Health, Vol 12,
 www.witpress.com, ISSN 1743-3525 (on-line) 

180  Modelling in Medicine and Biology VII



Brain (B)

ATC

C

C

IB

CB

Capillaries (C)QIC

QCB

CSQ

QCF

TC

Thoracic Space ( )

Qinf

Ventricular CSF (F)

FTQ

C TS

TSQ

C BT

Brain (B)

QFBC FB

BTQ

TVCExtra Ventricular CSF (T)

TVQ

C BS

(S)

Saggital Sinus
Veins and

(I)

Arteries
Intracranial

(A)
Arteries
Central

(V)
VeinsCentral

QAI

QSV

and

Jugular,

Sinus,
Transverse

Figure 1: A diagram of the lumped-parameter model. The dark line represents
the rigid cranial wall. Qij represents fluid flow from compartment i to
compartment j. Arrows indicate the customary direction of flow. Qinf

represents an infusion rate of CSF. Cij represents a distensible surface
between compartments i and j. The Starling-like resistor described in
this paper is associated with QSV .

compliance and fluidity matrices will be functions of compartmental pressures and
time, introducing nonlinearities.

If the oscillatory effects of the forcing terms in Q are subtracted, the solution
of (2) is a set of time-dependent intracranial pressures averaged over each cardiac
cycle. It was shown [9] that if the fluidity terms in Z are all constants then all
solutions of (2) will tend to a unique steady state. For the current investigation,the
fluidity term ZSV is no longer constant but is allowed to be pressure sensitive.
With this modification, convergence to a unique steady-steady state is no longer
guaranteed, and extensive analysis of the various possible steady-states and their
stability properties is required.
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2.2 The Starling-like resistor

A Starling resistor in a model for fluid flow through a collapsible vessel is a resis-
tance term that is dependant upon transmural pressure. When transmural pressure
is large, the vessel is considered open and the resistance to flow is small. Con-
versely, if the transmural pressure is small or negative, then the vessel is partially
or completely collapsed resulting in a large (or possibly infinite) resistance. In
many models [10–12], a Starling resistor has been placed at the location where the
cerebral veins empty into the saggital sinus near the cerebral lacunae. A common
feature of these locations is that the transmural pressure is positive in the normal
resting state. Starling resistors have not previously been introduced into the venous
sinuses because normal transmural pressure in these vessels is negative, and rigid
walls were assumed to prevent collapse.

The observed stenosis of the lateral sinuses in IIH patients suggests that the
venous sinuses are not completely rigid. Therefore, to allow for collapse the present
model includes a Starling-like resistor dependent on transmural pressure at the
level of the transverse sinus to represent the resistance to flow from compart-
ment S to V. The Starling-like resistor for the fluidity ZSV = 1/RSV is defined
in such a way that this fluidity term is positive, despite the transmural pressure
PV − PT being negative. However ZSV will decrease (resistance will increase)
when PV − PT becomes more negative. In particular, ZSV is defined by

ZSV = Max
[
ZSV

(
1 − m(PTV − PTV )

)
, p ZSV

]
0 ≤ p ≤ 1. (3)

Here, PTV = PT − PV , an overbar indicates the normal resting value, and Max
refers to the larger of the two terms. The graph of the relationship between ZSV

and PTV is piecewise-linear and continuous with an initial decreasing straight
line segment of slope -mZSV that passes through the scale point (PTV , ZSV ),
calibrated as in [9]. From equation (3), p ZSV is the minimum value of ZSV ,
and beyond the pressure difference PTV that produces this minimum the graph
of ZSV is a horizontal line at this minimum value. The form of this resistor is
based on the results of [13] showing that when a compliant vessel with internal
flow starts to collapse due to a uniformly applied external pressure it does so at the
furthest downstream location, and when this occurs the degree of this collapse will
be dependent upon the difference between the external and downstream pressures.
It may well be the case that in healthy individuals no such Starling-like resistor is
present and the sinuses are indeed rigid. This is achieved in the model by setting
m = 0, and the fluidity is therefore constant.

3 Steady state analysis

With the introduction of a pressure sensitive fluidity term ZSV , a steady state,
or equilibrium solution, to equation (2) for which dP/dt = 0 is no longer con-
strained to be unique, and the number of steady state solutions may increase from
unity, depending on the values of the parameters m and p in equation (3). The anal-
ysis in [14] shows that a piecewise linear curve m = B(p) now divides the p-m
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parameter plane into regions with unique and multiple steady states. This situation
is shown in figure 2. In the more rigid region of the (p,m)-plane, only one stable
steady-state solution exists, namely the base-value steady state. This steady state
solution is indicative of the normal healthy state. For values of (p,m) in the less
rigid region, three steady-states of the governing equations are found to exist; the
original stable base-value state, an unstable saddle point, and a stable state of ele-
vated pressures. The curve m = B(p) separating the two domains of sinus rigidity
is found in [14] to be a saddle-node bifurcation curve on which there are exactly
two steady-states. Additionally, an upper bound on m, given by m ≤ M = B(1),
must be imposed because if m is allowed to exceed this value, then a trans-critical
bifurcation would occur. For m > M , while the stable elevated pressure state in
the less rigid region state remains stable, the stable base-value state becomes unsta-
ble and the unstable saddle-node state becomes stable. On physiological grounds,
this possibility must be precluded.
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Figure 2: The (p,m) parameter plane. The solid piecewise-linear curve represents
the bifurcation curve m = B(p). The dashed line is a transcritical bifur-
cation curve at the upper value m = M .

4 Diagnosing IIH

Simulations conducted in [15] show that if the transverse sinus is sufficiently col-
lapsible, so that an elevated steady state exists in addition to the normal steady
state, then a temporary precipitating event may be capable of causing a permanent
transition from one stable steady state to the other. This result provides the basis

 © 2007 WIT PressWIT Transactions on Biomedicine and Health, Vol 12,
 www.witpress.com, ISSN 1743-3525 (on-line) 

Modelling in Medicine and Biology VII  183



0 10 20 30 40 50 60 70 80
−5

0

5

10

15

20

25

30

35

time (minutes)

Pr
es

su
re

s
(m

m
H

g)
P

T
(rigid sinus)

P
T

(collapsible sinus)
P

S
(collapsible sinus)

Figure 3: Simulated pressure responses to a CSF withdrawal of 5 ml/min for 5 min
starting at t = 2 min. Solid curve: CSF pressure (PT ) with a collapsi-
ble sinus. Dashed curve: saggital sinus pressure (PS) with a collapsible
sinus. For these simulations with a non-rigid sinus, p = 0.1, m = 0.08,
and the initial conditions reflect the elevated steady-state. Dotted curve:
CSF pressure with a rigid sinus. In this case the initial elevated condition
is due to a CSF absorption blockage.

for a potential diagnostic technique that may determine if a patient either has IIH
or is at risk for its development. For assessing the risk of developing IIH, the pos-
sibility of a transition from the normal pressure state to the elevated pressure state
is relevant. For confirming a diagnosis of IIH, the starting state will be the elevated
steady state, and a transition to the normal state is desired. The proposed diagnostic
technique involves monitoring the response of lumbar CSF pressure to a controlled
change in CSF volume through withdrawal or infusion of CSF. As indicated in fig-
ure 1, this CSF volume change is introduced into the model through the flow Qinf

in the extra-ventricular CSF compartment.
Figure 3 displays simulated responses to a 5 ml/min CSF withdrawal over 5

minutes. If the sinus is collapsible and the initial conditions are those associated
with the elevated state, the solid curve in figure 3 predicts that this CSF withdrawal
initiates a long term transition to the normal state. The rapid pressure drops evident
in figure 3 have been observed in clinical experience with IIH patients after CSF
removal. For comparison purposes, simulations were also run to predict the effect
of this same CSF withdrawal on an elevated pressure state due to a legitimate CSF
drainage blockage when the sinus is rigid (m = 0). In this latter case, as shown
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Figure 4: Response of the CSF pressure PT to a 14 ml bolus infusion over 2 min-
utes. Solid curve: m = 0.08 and p = 0.1, representing a collapsible
sinus. Dotted curve: m = 0, representing a fully rigid sinus.

by the dotted line in figure 3, the CSF withdrawal causes only a temporary drop in
CSF pressure followed by a slow return to the hypertensive state.

Figure 4 displays the simulated responses to a 7 ml/min CSF infusion over 2
minutes. As shown by the solid curve in figure 4, this temporary infusion is suf-
ficient to cause a transition to the elevated state when there is a collapsible sinus.
These simulation results are in full accord with the clinical findings of Higgins and
Pickard [5] who reported that after an IIH patient was successfully treated with a
shunt implant, the patient’s CSF pressure still exhibited a ”rapid” increase from
normal in response to infusion. However, as indicated by the dotted curve in fig-
ure 4, when the sinus is fully rigid (m = 0), the pressure response is the expected
quick increase in PT followed by a gradual decay to the normal steady-state [16].

These time-dependent simulations indicate that a rapid and sustained transition
from a normal to an elevated steady state in response to a CSF infusion is a key
predictor of the presence of a compressible transverse sinus and susceptibility to
IIH. Similarly, for a patient with elevated ICP, a rapid and sustained transition to
the normal pressure state following a CSF withdrawal indicates the presence of
a compressible transverse sinus and confirms a diagnosis ofIIH. If the elevated
ICP is due to some other cause, a return to the hypertensive state following CSF
withdrawal is to be expected.
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Figure 5: The altered (p, m)-plane with treatment applied. A stable, elevated
steady-state exists only for parameters falling above (or to the left of) the
given curves. Solid line: no simulated treatment, as in figure 2. Dash-Dot
curve: CSF production cut in half (ACTZ). Dashed curve: large resis-
tance (R = 9.3 mmHg/(ml/min)) VP shunt. Dotted curve: small resistance
(R = 3.8 mmHg/(ml/min)) VP shunt.

5 Simulating the effects of two treatment methods

Figure 2 shows that an elevated steady state exists only for an ordered pair of
parameters in the Starling-like resistor that fall above and to the left of the straight
line that is a bifurcation curve in the (p, m)-plane. Simulations incorporating mod-
ifications that model the effects of ACTZ (a reduction in CSF production) and
a ventriculoperitoneal (VP) shunt (CSF diversion) predict that these treatment
modalities will significantly alter the location and shape of the dividing bifur-
cation curve. The altered bifurcation curves in the (p, m)-plane predicted by the
simulations are shown in figure 5. It can be seen that ACTZ significantly reduces
the region of the (p, m)-plane in which an elevated steady state can exist. Shunt-
ing reduces this multiple steady state region to an even greater extent, with the
lower resistance shunt almost entirely eliminating the region where a stable ele-
vated steady state can exist. A second indication of treatment effectiveness is given
by figure 6. It can be seen from this figure that if ACTZ does not entirely eliminate
the elevated steady state by shifting the bifurcation curve in the (p, m)-plane, then
it does little to reduce the level of hypertension. On the other hand, both types of
VP shunts reduce the level of hypertension significantly, with the lower resistance
shunt producing the best results. In addition to the VP shunts, idealized lumboperi-
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Figure 6: Elevated steady state values of PT in terms of p. Solid curve: no simu-
lated treatment, as in figure 2. Dash-Dot curve: CSF production cut in
half (ACTZ). Dashed curve: large resistance (R = 9.3 mmHg/(ml/min))
VP shunt. Dotted curve: small resistance (R = 3.8 mmHg/(ml/min)) VP
shunt.

toneal (LP) shunts were also simulated using the extended model. The associated
curves predicted for the LP shunts were found to be nearly indistinguishable from
those for the VP shunts in figures 5 and 6 and will not be separately presented here.

6 Resolving the venous sinus stenosis

A number of studies [2, 5, 6, 17] have reported a disapearance of the venous sinus
stenosis in IIH patients following CSF drainage or diversion procedures that cause
a transition to the normal pressure state. More recently, however, Bono et al. [18]
report that transverse sinus stenosis in their study persists even after CSF pressure
has been reduced in all patients that presented with a stenosis. Results obtained by
Stevens et al. [14] analyzing the present model as a dynamical system indicate that
these findings are not contradictory. It is proved in [14] that the elevated pressure
state and the maximally-stenosed sinus must occur simultaneously, regardless of
the magnitude of the pressure elevation. Consequently, if the elevated ICP of IIH
is reduced to near-normal levels by weight loss or some other intervention but
the patient still remains in an elevated rather than normal pressure state, the sinus
will remain in its maximally collapsed state. Even though clinically it may appear
that pressures are now normal, if they are merely reduced but there has not been
an actual transition to the normal pressure state, the associated stenosis will not
resolve.
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7 Concluding remarks

A steady-state analysis of the current model demonstrates that when the transverse
sinus is not required to be rigid an additional stable steady-state with elevated
pressures may be present as a solution of the system. It is hypothesized that IIH
is a physiological manifestation of this additional stable elevated pressure state,
and that a requirement for the development of IIH is a collapsible, as opposed
to fully rigid, transverse sinus. Simulations suggest that rapid transitions between
normal and elevated states in response to CSF infusions or withdrawals are indica-
tive of the presence of such collapsible vessels. The model also makes predictions
concerning the relative efficacy of standard treatment methods for IIH in various
parameter regimes. As with any modeling study, measured data from IIH patients
will be required to fully validate the present hypotheses.
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