gﬁ' Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

On coupling cellular automata based activation
and finite element muscle model applied to
heart ventricle modelling

R. Cimrman, J. Kroc, E. Rohan, J. Rosenberg & Z. Tonar
New Technologies Research Centre, University of West Bohemia, 306 14
Plzeri, Czech Republic

Abstract

The paper deals with the finite element macroscopic model of contracting myocard-
ium. The constitutive model of the tissue is based on the theory of mixtures, involv-
ing a simple model of intramyocardial blood perfusion. Anisotropy of the tissue is
described in terms of preferential directions of the muscle and connective fibres.
A simple Hill-type model of the muscle fibre contraction is employed. The local
value of the activation parameter is defined through the four phases of the action
potential wave; its propagation is simulated using the cellular automaton (CA).
The approximated excitable medium, which comprises the conducting system, is
partitioned into the normal, conducting and void cells. The coupling of the CA
analysis with the FEM model of the heart mechanics is discussed. Introductory
numerical examples are included, describing contraction of the dog heart.

1 Introduction

The aim of this paper is to present a computational model of the excitable myocar-
dial tissue. Although this topic has become a subject of intensive research in recent
decade, cf. [7, 1, 3], the existing models usually do not capture the complexity of
the phenomena which feature modelling of the myocardium mechanics. For real-
istic simulations of heart beats it is important to treat not only the 3D geometrical
structure of the cardiac muscle fibres, but also a relevant model of the excitable
medium. In our approach the latter is based on the cellular automaton (CA) which
is employed to describe spatial propagation of the depolarization wave. The CA is
coupled with FE model of the deformable ventricles.
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The CA — FEM coupling is tested in a simulation of deforming dog-heart ven-
tricles. So far in our model we have considered only a static, spatially uniform
pressure Joad of the ventricles and computed the CA response to define activation
of the muscle fibres in time over the 3D geometry. For a more genuine description
of the heart beats the fluid flow problem inside the ventricles should be consid-
ered as well as a correct interaction of the blood with the ventricular walls. This,
however, is beyond purpose of this study which should show only viability of the
approach presented.

2 Structure and functions of the myocardium

Cardiac muscle is the striated type of muscle tissue with contractile myofibrils
regularly arranged in the form of sarcomeres, cf. [4]. The ventricular muscle is
arranged into three systems of fibres. Whereas the inner and outer layers are thin
muscle membranes, the middle layer consists of locally parallel muscle fibres that
are organized into twisted sheets immersed in the collagenous matrix. The electro-
physiological discontinuity between the atrial and ventricular myocardial masses
is ensured by the fibrous skeleton, which also serves as a stable but deformable
base for the attachments of the muscle fibres.

2.1 Excitatory and conductive system of the heart

The heart is endowed with a special system for generating rhythmical impulses and
conducting these impulses rapidly throughout the heart. Tts elements are derived
from cardiac muscle cells containing few contractile fibrils and they exhibit self-
excitation with inherent rhythmicity and varying rates of conduction. The conduc-
tion velocities are shown in Table 1.

The sinus node displays self-excitation acting as a normal pacemaker. Then the
impulse is conducted to the atrioventricular (A-V) node, where the action poten-
tial (AP) wave from the atria is delayed before passing into the ventricles. This
delay allows the atria to empty their contents into the ventricles before ventric-
ular contraction begins. The A-V bundle, conducting the impulse from the atria
into the ventricles, admits only forward conduction, preventing re-entry of cardiac
impulses by this route from the ventricles to the atria. The left and right bun-
dle branches and the system of large subendocardial Purkinje fibres conduct the
impulse immediately to all portions of the ventricles, thus, preserving synchronous
contraction required for the effective pressure generation.

Cardiac muscle is refractory to restimulation during the AP wave, when a nor-
mal cardiac impulse cannot re-excite an already excited muscle area. The absolute
refractory period of the ventricle is 0.25-0.3 s, which is about the duration of the
AP. During an additional relative refractory period of about 0.05 s, the muscle is
excitable by a supranormal impulse only.
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Table 1: Conduction velocities of the action potential in the heart [4]

Part of the conducting system Velocity of conduction [m.s ~1]
atrial muscle and internodal pathways 0.3-1.0

A-V node and penetrating A-V bundle 0.02-0.05

left/right bundle branches and Purkinje fibres 1.5-4.0

ventricular muscle 0.3-0.5

2.2 Excitation-contraction coupling and function of calcium ions

The action potential initiates release of Ca2* ions from the sarcoplasmic reticulum
and their diffusion from the T tubules, thus enhancing the contraction power. The
Ca®* ions diffuse into the system of myofibrils and catalyze the chemical reactions
in the troponin-tropomyosin complex that promote sliding of the actin and myosin
filaments along one another; this produces the muscle contraction.

At the end of the plateau of the AP, the influx of Ca®7 to the interior of the muscle
fibre is suddenly cut off, and the Ca%* ions are rapidly pumped back from the
sarcoplasm. As a result, the contraction ceases until a new action potential occurs.

3 Macroscopic model of the heart tissue
3.1 Application of the mixture theory approach

A detailed description of the heart tissue mechanics from the sub-microscopic to
macroscopic scales is beyond our capabilities; such a model would be too com-
plex and, thus, expensive to be used for practical simulations, The model presented
below reflects main anisotropic features of the tissue, which can be observed by
a standard analysis of micrographs. In this way volume fractions can be deter-
mined for major heart tissue components which form the tissue fibrous skeleton
and connective tissue matrix. These fibrous components are assigned by «; they
are responsible for anisotropy of the tissue. Therefore, it is important to determine
also one or more preferential directions for each component « and the associated
volume fractions. Let Nppp be the total number of preferential directions for all
fibrous components @ = 1,2, -+, Npc. We define the index subsets [, so that
{1,...,Nppp} = Ugi‘f I,. By ¢* we depote a volume fraction associated with
the preferential direction -*. Denoting by ¢.,, the volume fraction of the amor-

phous matrix, we have
Nre

b+ Y B =1. (1

a=1 kel,

We assume that any interpenetration of the components is negligible, so that a
unique field of displacements can be considered. It possesses a unique macro-
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scopic strain field; denoting by F;; the Green-Lagrange strain tensor, we define
the projected strain foreach k = 1,..., Nppp:

" = B vk 1/;‘C , No summation over k. (2)

Using e* we can define tension 7% in the preferential direction of the k-th compo-
nent. In general, the constitutive law depends on internal variables x 1, y2,... and
activation parameters a1, as, ... (in muscle fibres). Thus, for the k-th component
the corresponding 2nd Piola-Kirchhoff stress is given by

TS = vfubet | where 7% = fh(t, ¢k, ¢, {x}, {a}) )
where ¢ is time and ¢ is the strain rate. If & is associated with a collagen fibre, then
f* is introduced as a viscoelastic response, involving one internal variable. In our
model we employ the three parametric model of the standard solid element with a
nonlinear elastic response.
If % is associated with a muscle fibre, then one, or more activation parameters
ai,ay depend on the local value of the excitation wave. The muscle contraction
force can be described using the sliding cross-bridge theory with approximation of
the distribution moments, cf. [10]. In this case (3) involves three internal param-
eters xo, X1, x2 Which correspond to the Oth, 1st and 2nd moments of the cross-
bridge distribution; these obey the differential equations

)l(l = gl(evéaa’ {XOaXl’X2}) ] l = Oa 1’2 3 (4)

where ¢ is the projected strain (2). Thus, {x} are associated with the particular
preferential direction.

In this study we use a model of the Hill type, which does not involve internal
variables and, thus, cannot describe fading memory effects. The generated tension
T of (3) is defined as follows:

2

7(€, &, Fy) = né + FyFay exp {— (iﬂ) } exp{x min{0;¢}}, (5
where s determines the sensitivity of the actin-myosin overlaps with respect to dif-
ference of deformation e and the optimal deformation € op¢, & relates to behaviour
while shortening and 7 is a viscosity coefficient. For more information about this
and similar models, see [8]. The value of the activation parameter F, € [0, 1]
should correspond to a propagation of an action potential in heart. This can be
done using e.g. the Fitz-Hugh Nagumo equations, or using the theory of cellular
automata, see Section 4.
The amorphous matrix of the tissue can be described as a hyperelastic material.
The effective part of the stress S;7 is defined using energy function W™(E;;), ie.
57 = OW™/8E;;. A unique thermodynamic pressure field p corresponds with
(in)compressibility of the bulk tissue. In the next section we discuss the blood
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perfusion problem where p acts as the intramyocardial pressure. By virtue of the
mixture theory the total 2nd Piola-Kirchhoff stress in the tissue is

m Nrc
Sy = —JCGp+ b V" 4 SN Tk (6)
Y O a=1kel v

where Cj; = 2E;; + d;; is the right Cauchy-Green deformation tensor and J =
(detC,-,-)‘/Z.

The model enables that at any material point both the passive and the active fibres
can be defined in several preferential directions, as required in accordance with the
histological observation. The fibres are defined to have no stiffness opposing their
compression, which corresponds to the buckling phenomenon of fibres dispersed
in the matrix at the microstructure. It amplifies anisotropy of the composite, mak-
ing the difference between tension and compression. As another consequence it
allows for describing creep and relaxation of unloaded viscoelastic fibres when the
matrix is being compressed in the direction of the fibres.

3.2 Intramyocardial blood perfusion

The blood perfusion of the myocardial muscle presents the most important source
of the energy which is needed for muscle fibres to contract and, thus, to pump the
blood. The perfusion is maintained thanks to the coronary arteries which form a
network branching in the epicardium and entering the deeper layers.
Neglecting the hierarchical structure of the intracoronary system, here we shall
consider only a crude approximation of the perfusion which is based on the macro-
scopic Darcy’s flow, see [1]. Using this approach, however, we should be able to
account for the periodic changes of the bulk volume of the myocardial tissue, as
dependent on shrinkage and distension processes during one cardiac cycle. The
local compression of the myocardium c¢an be a measure of the blood supply. In
consequence, this can be used as a feedback which influences the local propaga-
tion of the activation wave.
The apparent perfusion velocity w; depends on the gradient of the intramyocardial
pressure
2

w; = _Kijga_m]; y Kij = ké,-j (JT: + 1) , (7)
where k is the permeability, and N the porosity, [1]. The local conservation of
mass is expressed as

% awi

(9.1:,' B:L‘l

where 4; is the material derivative of the displacements. In order to write (8) in the
weak form, the boundary conditions for p, or 8p/dz ; must be specified. On the
epicardium the blood can be squeezed out to the coronary system (or sucked in),
P = po on Ofepicard; Po should correspond to the venous pressure. As no blood
is assumed to seep into the ventricle, or through the basement, dp/8z; = 0 on

=0 inQ(f), (8)
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O\ OQepicara. After transformation to the reference domain £2(0) and using some
other manipulations we obtain the weak formulation

: - Op dq
Jqu+/ Kij—— - dX =0, Vg € Q(22(0)), (9)
Lo o Ko 5% 7€ QE(0))

where Q(Q) = {q € H? (Q)| g = Oon 8ericard}, J = J(C_l)ijEij and the
transformed permeability tensor is K;; = kJ(C1)y;((J — 1)/Ns + 1)%. Here
(9) replaces the usual incompressibility equation which is comprised in the mixed
formulation for computing the displacement and pressure fields.

3.3 FE discretization and the energy conserving scheme

In this scheme [2] the quantities are evaluated at a “mid-point” m between the
time levels t — 1 (known) and ¢ (unknown). We denote a quantity at times ¢t — 1,
t by X1, X3 respectively. Thus X,,, = w1 Xy + weXs, wy +we = 1, wy €
[0,0.5]. By setting w1 < 0.5 a numerical dissipation, which stabilises the solution,
is introduced into the system. The finite element approximation of displacements
and the pressure is given by u &~ x7 - u, p ~ 97 - p respectively, where x and 1
are the Galerkin basis functions,

In this paragraph we employ the following notation: F' the deformation gradient,
J = detF, s the 2™¢ Piola-Kirchhoff stress tensor in vector form, G, the pres-
sure gradient operator, C the right Cauchy-Green tensor in matrix form, M the
mass matrix, 0, Er, (Um; Vm) = Bpvy, the gradient of the Green strain. Using
this notation, we can write the discrete equilibrium equation in the mid-point m
(omitting any loading terms for brevity):

m = /stm dQ + M (U2A_tUI> =0, (10)
S

Bom :=/(J1—J2)z,bdﬂ—At /GCTK’lGCdQ p2=0. (I
o o

Above we have replaced J of (9) by (J2 — J1)/At and related K;; to step t — 1 to
simplify the tangent matrix. The tangent linear system of the Newton method then
attains this form (using e = 2(ue — uy) /AL — 0y):

Kim+zsM . Rp bu \ _ | —Gmou (12)
P, , —AtD dp —hmoa )
where K r,, is the usual tangent stiffness matrix, R,, = 8¢,,/0ps, Py, = Ohyp,/Ous

and D is the bracketed term of (11) (= Ohy,/0p2). We set Us new = Uz old +
0, P2new = P2,0id + Op and iterate until convergence is achieved.
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4 Modelling propagation of the excitation wave
4.1 Simulation by the cellular automata (CA)

In the mathematical model of muscle fibres, the tension generated by these fibres
depends on one, or more, activation parameters (functions of space and time),
which have to be specified as an input. For simulations of complex problems, such
as the myocardium contraction, these parameters must vary, as the “activation™
propagates, reflecting the chemical and other processes in the tissue. A suitable
modelling tool fitted for this purpose seems to be provided by the theory of cellu-
lar automata (CA), cf. [6, 9].

The concept of CA was developed already by John von Neumann in 1948, In
fact, CA are discrete dynamic systems useful for simulations of complex prob-
lems, where a classical formulation in terms of (partial) differential equations is
too difficult or does not exist.

CA-model discretizes space into three—dimensional (3D) lattice of cubes. Cubes,
i.e. elements of this lattice, are called cells. Every cell has defined a neighbour-
hood - usually a list of nearest neighbouring cells and the cell itself — that is uni-
form through the whole lattice. Every cell contains a list of variables, e.g. state,
morphology, etc. Morphology is divided into three different classes: conducting
system, muscle, and the SA-node. The evolution of the system is driven by a tran-
sition rule that computes new values of variables using values of cells laying in the
neighbourhood of given cell from the previous CA—step.

Generally, the transition rule can be split into several sequential steps that handle
the evolution of different parts of the cellular automaton belonging into different
morphological classes, i.e. the conducting system, muscle, and the SA-node. Due
to computational reasons, one additional morphological class is defined with the
empty value that should be understood in the following sense. A cell having the
empty morphological state is not included into propagation of excitation events,
but is important to define the neighbourhood; every surface cell has at least one
cell with empty morphological state in its neighbourhood.

DF u]
][]
D+E|

I
Figure 1: The next state in the
current cell (filled rectangle)
depends on its actual state and on
states of the cells in the local
neighbourhood.

][]

Figure 2: Rotated body with a
selected element T, CA lattice.
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Each cell in the CA-model has two variables, namely, state and morphology. Vari-
able state of the cell defines the level of excitation of the cell laying in the interval
of < 0,21 >. State equal to the value of 21 is the excited state. As the value of the
state variable decreases, first absolutely refractory states and then relatively refrac-
tory states are reached. The resting state, i.e. the situation when the cell waits for an
excitation event, has assigned the zero value. Every cell inside the lattice belongs
to one of the following morphology classes, i.e. empty, the conducting system,
muscle, and the SA—-node with values of 0, 1, 2, and 3, respectively. All cells with
values between 1 and 3 define excitable medium. Cells with value equal to zero,
i.e. empty cells, do not influence the excitation process at all.

4.2 CA and FEM coupling

The results of CA simulation serve for defining the activation parameters of the
above mentioned model of muscle fibres.
Thus, modelling of muscle contraction is performed in two steps:
1. CA simulation for all required time steps.
2. FE simulation of muscle mechanics using the distribution of action poten-
tials, as computed by CA.
As the result of step 1, at any time and for each integration point of the FE mesh
the activation parameter F,, see (5), is obtained by an averaging procedure which
operates on the state values of all CA cells within the particular element.
This loose coupling is possible due to the assumed independence of the state of
CA cells on deformation of the tissue at the corresponding point, as computed by
FE simulation.
Clearly, the CA lattice must reflect the geometry of (undeformed) FE mesh. For
this purpose the following algorithm has been developed:
» Input the box which is going to contain the CA lattice. To minimize the num-
ber of CA cells it is possible to rotate the coordinate system X; of CA box

with respect to the system X; of the FE body.
o Set division of CA box, i.e. cell counts in axial directions X;.
» For every element of FE mesh mark (as tissue, conducting system, pace-

maker, ...) the CA cells ¢ contained within, see Fig. 2. This step involves

computing the reference element coordinates £ = £(c) by the Newton method
(with 3 x 3 tangent matrix of the mapping ¢(¢) =~ x 7 (€) - =, where x are

coordinates of the element nodes). B B

5 Numerical simulation of the ventricular contraction

The numerical simulations were performed using the geometry of the dog heart,
for which we obtained relevant geometrical data with a correct orientation of mus-
cle fibres, see Fig. 3. We consider a model of the heart ventricles only (i.e. beneath
the basal skeleton), which can be assumed to form a separate electro-mechanical
subsystem of the heart. The ventricles (fixed at the top) are inflated by ventricular
pressures reaching 120 mm Hg for the left and 25 mm Hg for the right ventricle,



gﬁ' Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

Simulations in Biomedicine V. 33

e

Figure 3: Geometry of the dog heart Figure 4: Propagation of the action
with cutlined network of muscle potential. Three consecutive
fibres. instants. 4 states indicated by
different colours.

- f“: - o } 1o Eil o
Figure 5: Contracted and inflated Figure 6: Stress distribution in active
shapes of ventricles, (muscle) fibres.

0 X

respectively. Difference between contracted and released heart geometry is demon-
sirated in Fig. 8. In Fig. 6 the tension in muscle fibres is displayed for an initial
period of the systolic contraction. The values of activation are obtained from the
CA analysis of excitation. For itlustration, in Fig. 4 we display results of CA anal-
ysis on the human heart, for which we have the conducting system well defined.

6 Conclusion

The model of myocardium presented in this paper allows for capturing impot-
tant nonlinear and anisotropic features of the cardiac tissue. In order to describe
behaviour of the pumping heart, a relevant model of the excitation wave propaga-
tion is needed. Our approach is based on coupling the cellular automata (CA), for
simuiation of the excitation, with the finite element model of the heart mechanics.
The CA model seems to be a flexible tool, which can be adapted easily o approx-



Eﬁ Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

34 Simulations in Biomedicine V

imate the wave propagation, influenced by various physiological effects. The sim-
ple model of muscle fibres currently used seems to be sufficient for simulation
of steady state periodic responses. For studies regarding transition phenomena,
caused e.g. arrhythmia, however, more sophisticated models based on cross-bridge
kinetics can be used, which also involve fading memory effects. Due to inclusion
of the myocardial intracoronary blood perfusion, its consequence on stiffening of
the ventricular wall can be analyzed. Local deficiency in intramyocardial blood
supply can decrease rapidly the speed of excitation wave,; this effects can be cap-
tured by the CA algorithm.

For further improvement of the heart model the dynamic blood flow inside the
ventricles will have to be pursued. Effects of the local tissue deformation on prop-
agation of the excitation wave should also be reconsidered in forthcoming studies;
for this, however, the CA simulation will need to be tightly coupled with the FE
analysis of deformation.
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