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Abstract

In this paper we focus on the determination of vorticity boundary conditions for the
solution of Navier–Stokes equations in velocity-vorticity form. Boundary element
method is used to calculate the vorticity boundary conditions on an arbitrary
curved surface. The method is used in an in-house fluid and heat transfer solver.

Results of simulations of flow and heat transfer of nanofluids are presented.
We consider a heated elliptical cylinder in a cooled cubic enclosure where natural
convection develops. Steady laminar regime is considered with Rayleigh number
values up to a million. Al2O3 nanofluid is considered, as well as pure water
for validation purposes. Properties of the nanofluid are considered to be constant
throughout the domain and are estimated using models for different nanoparticle
volume fractions (0.1 and 0.2).

The results show highest heat transfer enhancement in the conduction dominated
flow regime, where the enhanced thermal properties of nanofluids play an
important role. When convection is the dominant heat transfer mechanism, using
nanofluids yields a smaller increase in heat transfer efficiency.
Keywords: nanofluids, boundary element method, vorticity boundary conditions,
heat transfer, velocity-vorticity.

1 Introduction

Cooling is one of the major challenges in development of efficient devices. Natural
convection is used to design many devices, for example, heat exchangers and
electronics coolers. Choice of a working fluid is very important, as its thermal
properties determine heat transfer characteristics. As thermal conductivity of
water, oil and other working fluids are low, Choi [1] introduced nanofluids.
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Nanofluid is a suspension consisting of uniformly dispersed and suspended
nanometre-sized (10–50 nm) particles in base fluid. Nanofluids have very
high thermal conductivity at very low nanoparticle concentrations and exhibit
considerable enhancement of convection (Yang et al. [9]).

Several numerical methods have been proposed for the simulation of nanofluids.
In this paper we present a boundary element method based algorithm for
simulation of flow and heat transfer of nanofluids. We formulate the Navier–Stokes
equations in velocity-vorticity form and couple them with the energy conservation
equation. Special consideration is given to the determination of vorticity boundary
conditions.

2 Governing equations

The governing equations are written using effective properties of the nanofluid.
These are: density ρnf , dynamic viscosity μnf , heat capacitance (cp)nf , thermal
expansion coefficient βnf and thermal conductivity knf , where subscript nf is
used to denote effective (i.e. nanofluid) properties. The properties are all assumed
constant throughout the flow domain. Pure fluid properties will be denoted by the
subscript f . The properties are estimated using models (Oztop and Abu-Nada [3])
and depend on the nanoparticle volume fraction ϕ.

The nondimensional steady velocity-vorticity formulation of Navier–Stokes
equations for simulation of nanofluids consists of the kinematics equation, the
vorticity transport equation and the energy equation, relating the velocity �v,
vorticity �ω and temperature T fields. These equations may be written in the
following way (Ravnik et al. [5]):

∇2�v + �∇× �ω = 0, (1)

(�v · �∇)�ω = (�ω · �∇)�v + Pr
μnf

μf

ρf
ρnf

∇2�ω − PrRa
βnf

βf

�∇× T�g, (2)

(�v · �∇)T =
knf
kf

(ρcp)f
(ρcp)nf

∇2T. (3)

The flow and heat transfer of a nanofluid is thus defined by specifying the pure
fluid Rayleigh and Prandtl number values. They are defined as

Ra =
g0βfΔTL3ρf (ρcp)f

μfkf
, P r =

μfcp
kf

. (4)

We consider water (cp = 4179 J/kgK, ρ = 997.1 kg/m3, k = 0.613 W/mK,
β = 21 · 10−5 K−1, μ = 0.912 mm2/s) and Al2O3 nanofluid with particle volume
fraction ϕ = 0.1 and ϕ = 0.2. The nanofluid properties are evaluated using
models (Ravnik and Škerget [4]). These yield for the ϕ = 0.1 Al2O3 nanofluid:
cp = 3132 J/kgK, ρ = 1294 kg/m3, k = 0.807 W/mK, β = 14.82 · 10−5 K−1,
μ = 1.187 mm2/s and for ϕ = 0.2 Al2O3 nanofluid: cp = 2476 J/kgK,
ρ = 1592 kg/m3, k = 1.047 W/mK, β = 10.95 · 10−5 K−1, μ = 1.593 mm2/s.
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3 Numerical procedure

The governing equations were solved for heat and fluid flow by an in-house
boundary element based algorithm (Ravnik et al. [5, 6, 10]). The algorithm solves
the velocity-vorticity formulation of Navier–Stokes equations. It requires known
velocity and temperature boundary conditions, while the boundary conditions for
vorticity are unknown and are calculated as a part of the algorithm.

In the first step, the algorithm estimates boundary vorticity values using single
domain BEM on the kinematics Equation (1). This step is described in detail in
Section 3.1. Secondly, using sub-domain BEM solution of the kinematics Equation
(1) the velocity in the domain is calculated. Thirdly, the energy Equation (3) is
solved for domain temperature values using sub-domain BEM. Lastly, the vorticity
transport Equation (2) is solved for domain vorticity values using sub-domain
BEM. The procedure is repeated until convergence is achieved. Under-relaxation
is used. A value of 0.1 is used for problems with low Rayleigh number value and
0.01 for problems with high Rayleigh number value.

The singular boundary integral representation for the velocity vector can be
formulated by using the Green theorems for scalar functions, or weighting
residuals technique. Following Wu and Thompson [8], Škerget et al. [7] derived
the following integral form of the kinematics equation, employing the derivatives
of the fundamental solution:

c(�ξ)�v(�ξ) +

∫
Γ

�v(�n · �∇u�)dΓ =

∫
Γ

�v × (�n× �∇u�)dΓ +

∫
Ω

(�ω × �∇u�)dΩ, (5)

where u� = u�(�ξ, �r) is the elliptic Laplace fundamental solution, �ξ is the source
point on boundaryΓ, �r integration point in domain Ω (includingΓ), c(�ξ) geometry
coefficient and �n outward pointing normal to the boundary. Geometry coefficient
can be generally computed as Θ/4π, where Θ is the internal solid angle at point �ξ
in steradians. The Laplace fundamental solution is u�(�ξ, �r) = 1/(4π|�ξ − �r|).

The integral forms of vorticity transport and energy equation are

c(�ξ)ωj(�ξ) +

∫
Γ

ωj
�∇u∗ · �ndΓ =

∫
Γ

u∗qjdΓ

+
1

Pr

μf

μnf

ρnf
ρf

(∫
Γ

�n · {u∗(�vωj − �ωvj)} dΓ−
∫
Ω

(�vωj − �ωvj) · �∇u∗dΩ
)

−Ra
βnf

βf

μf

μnf

ρnf
ρf

∫
Γ

(u�T�g × �n)jdΓ

−Ra
βnf

βf

μf

μnf

ρnf
ρf

∫
Ω

(T �∇× u��g)jdΩ, (6)

c(�ξ)T (�ξ) +

∫
Γ

T �∇u∗ · �ndΓ =

∫
Γ

u∗TqdΓ

+
kf
knf

(ρcp)nf
(ρcp)f

(∫
Γ

�n · {u∗(�vT )}dΓ−
∫
Ω

(�vT ) · �∇u∗dΩ
)
. (7)
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In the subdomain BEM method we make a mesh of the entire domain Ω and
name each mesh element a subdomain. Equations (5), (6) and (7) are written for
each of the subdomains. In order to obtain a discrete version of the equations, we
use shape functions to interpolate field functions and flux across the boundary and
inside of the subdomain.

3.1 Vorticity boundary conditions for an arbitrary 3D surface

Several different approaches have been proposed for the determination of vorticity
on the boundary. We propose the usage of singular integral kinematics equation.
In this work, we extend the approach for determining boundary vorticity on an
arbitrary 3D surface.

The normal component of vorticity at the boundary is usually known. If we
consider a wall, then the velocity at the wall is either zero or we know the value of
slip velocity. Thus, the normal component of vorticity may be calculated directly
from the known velocity distribution at the wall. This is possible due to the fact that
in order to calculate the normal component of vorticity only tangential components
of the velocity are needed. The same reasoning applies at the inlets and outlets as
well, since the velocity profile is known there. In the case of symmetry or free slip
boundary conditions, the flux of normal component of vorticity is zero. This can
be used in the vorticity transport equation and as a result, the normal component
of boundary vorticity can be calculated there.

For an arbitrary surface, such as the cylinder in our case, the normal component
of vorticity is calculated using Cartesian vorticity components and the unit normal
to the surface, i.e. ωn = �n · �ω =

∑
i niωi, where i = x, y, z. Since we know that

ωn = 0 at the no-slip surface and �n changes along the surface, we propose the
following strategy to find ωx, ωy and ωz .

To obtain discrete form of integral Equation (5) we divide computational domain
Ω into domain elements and its boundary Γ into boundary elements. Domain
elements used are hexahedra with 27 nodes enabling quadratic interpolation.
Boundary elements used are sides of domain hexahedra with 9 nodes and also
enable quadratic interpolation. A function, e.g. temperature, is interpolated over a
boundary elements as T =

∑
ΞiTi, inside each domain element as T =

∑
ΦiTi.

Functions Ξi and Φi are interpolation functions.
After a choice of the source point �ξ in (5) has been made and interpolation

of functions used, the integrals in (5) depend only on the geometry and the
fundamental solution. They may be calculated and stored in matrices. The
boundary integral on the left hand side are stored in the [H ] matrix, the boundary
integral on the right hand side in the [ �Ht] matrix and the domain integrals on the
right hand side are the [ �D] matrices. For each source point a row in the matrices is
calculated:

[H ] =

∫
Γ

Ξi(�n · �∇u�)dΓ, [ �Ht] =

∫
Γ

Ξi(�n× �∇u�)dΓ, (8)
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[ �D] =

∫
Ω

Φi
�∇u�dΩ. (9)

The [H ] matrix holds integrals of normal derivatives of the fundamental solution,
[ �Ht] tangential derivatives and [ �D] the gradient of the fundamental solution. Thus
the discrete version of Equation (5) may be written as

[H ] {�v} = {�v} × [ �Ht] + {�ω} × [ �D], (10)

where curly brackets denote vectors of nodal values of field functions. In order to
obtain a system of linear equations, the source point is placed into all boundary
nodes. Thus the number of rows in all matrices is equal to the number of boundary
nodes. The number of columns in [H ] and [ �Ht] is also equal to the number of
boundary nodes since they are multiplied by boundary velocity values. On the
other hand, the number of columns in [ �D] is equal to the number of all nodes, as
[ �D] is multiplied by vorticity in the domain and on the boundary.

In order to use Equation (10) to solve for boundary vorticity values we
decompose the vorticity vector into two parts in the following way {ωi} =
{ωi}Γ + {ωi}Ω′ . In the vector {ωi}Γ only the boundary vorticity values are
non-zero and in the vector {ωi}Ω′ only the domain vorticity values are non-
zero. The subscript Γ stands for boundary nodes only and Ω′ stands for interior
nodes only (without boundary nodes). Furthermore, one must set up the system
in such a way, that the system matrix is non-singular. Since we are dealing with
boundary element method, the system matrix may contain a normal derivative of
the fundamental solution for the integral kernel. The integral kernel in the matrices
[Dx], [Dy], [Dz] are the components of the gradient of the fundamental solution.
The normal derivative may be written as [nx][Dx]+[ny][Dy]+[nz][Dz] = [�n]·[ �D],
where [nx], [ny] and [nz ] are diagonal matrices of unit normal vector components
�n = (nx, ny, nz) for each boundary source point.

To obtain such a system, we perform a vector product of (10) by normal vector
[�n]

[H ] ([�n]× {�v}) = [�n]×
(
{�v} × [ �Ht] + {�ω} × [ �D]

)
, (11)

and after using [�n] × ({�ω} × [ �D]) = ([�n] · [ �D]){�ω} − [ �D]{ωn} and {�ω} =
{�ω}Γ + {�ω}Ω′ and rearranging we obtain(

[�n] · [ �D]
)
{�ω}Γ = [ �D]{ωn} −

(
[�n] · [ �D]

)
{�ω}Ω′

−
(
[�n] · [ �Ht]

)
{�v}+ [ �Ht]{vn}+ [H ] ([�n]× {�v}) . (12)

In (12) all three equations for individual components of boundary vorticity are
non-singular. However, they can only be used to solve for tangential components
of the boundary vorticity, since the equation for normal component of boundary
vorticity is identically equal to zero. This can be seen, if we consider a boundary
located in plane y − z with the unit normal �n = {1, 0, 0}. In this case ωx is the
normal component of the vorticity and vx is the normal component of velocity.

Boundary Elements and Other Mesh Reduction Methods XXXVIII  265

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press



We observe that all terms in the Equation (12) for ωx are either zero or cancel each
other. Thus, the equation is identically equal to zero and it can not be used for the
solution of the normal component of vorticity.

Finally, the algorithm for determining the boundary vorticity is as follows. At
each source point, which is located at the boundary, compare |nx|, |ny| and |nz |
to find the largest component of the normal vector. Use Equations (12) to find the
other two components of vorticity and use equation ωn = �n · �ω and the known
ωn to find the last boundary vorticity component. For example, if |nx| > |ny| and
|nx| > |nz | then solve (12) for ωy and ωz and solve ωn = �n · �ω for ωx.

4 Problem description

A heated cylinder is inserted into an enclosure with four cooled walls. Front and
back walls are perfectly insulated (adiabatic). All walls have a no-slip boundary
condition applied for velocity. The heat is transferred from the cylinder to the
fluid causing density changes that result in buoyancy forces. Natural convection
develops – the fluid rises around the cylinder and transports heat towards the cold
walls. The heat flux depends on the type of fluid, the shape of the cylinder and the
orientation of the enclosure with respect to gravity.

The centre of the cylinder is located at the centre of the enclosure. The shape of
the base of the cylinder is an ellipse with major semi-axis a and minor semi axis
b. The are defined as

a = 0.2L, b = a
√
1− e2, (13)

where e is the eccentricity of the ellipse and the length of the cylinder is L. The
enclosure is cubic with a volume of L3. It is tilted with respect to gravity with an
angle of γ. The temperature of the cylinder is constant Th and the temperature of
the cold walls is also constant, Tc.

In order to validate the numerical model and assess mesh computational quality,
we performed simulations using air as the working fluid and compared results to
Kim et al. [2], who studied natural convection of air in a square enclosure with a
circular cylinder inserted in 2D.

Comparison is done for Rayleigh number values Ra = 103 − 106. The
flow regime is laminar and steady. Heat transfer from the cylinder into the fluid
is measure in terms of the Nusselt number. Three computational meshes are
considered. Comparison is presented in Table 1. We observe good agreement with
the results of Kim et al. [2], who studied the 2D case. Looking at the results on
the fine mesh, we observe all Nusselt number values are within 1% of the Kim’s
results. Based on this, we decided to use the fine mesh for all simulations presented
in the results section.

5 Results

We considered several Rayleigh number values as well as different angles of
inclination versus gravity. The elliptical shape causes a change in flow regime
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Figure 1: Computational domain and coordinate system with boundary conditions.
The angle α measures a location around the circumference of the
cylinder. The angle γ measures the tilt of the enclosure with respect to
the gravity vector. In a 3D simulation the front and back walls (y = 0 and
y = L) are adiabatic and have no-slip boundary condition for velocity.
In a 2D simulation, the font and back walls have symmetry boundary
conditions applied.

Table 1: Validation of the numerical method. Average Nusselt number values at
the hot cylinder for different values of the Rayleigh number are compared
with the results of Kim et al. [2]. Simulations are performed in 2D for
a circular cylinder (e = 0) on several meshes using air (Pr = 0.7) as
the working fluid. Coarse mesh had 14.4, fine 32.0 and very fine 39.4
thousands nodes.

Mesh 103 104 105 106

Very fine 5.041 5.133 7.756 14.020
Fine 5.041 5.133 7.779 14.080

Coarse 5.042 5.135 7.834 14.275

Kim et al. [2] 5.093 5.108 7.767 14.110
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when tilted against gravity. To illustrate this point we present temperature contours
and streamlines in Figures 2 and 3. At Ra = 104 the heat transfer is conduction
dominated and thus temperature contours keep the elliptical shape of the cylinder.
Streamlines reveal a symmetrical flow field, with a vortex on both sides of the
cylinder. Vortex centres are located approximately on a diagonal line going through
the enclosure from the top-left corner to the bottom-right corner.

Ra = 104 Ra = 105 Ra = 106

γ = 45◦
�g

0.1

0.7

γ = 15◦

ϕ
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0
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l 2
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na
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high heat flux

low heat flux
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Figure 2: Temperature contours of ϕ = 0.1 Al2O3 nanofluid in 2D simulation
with elliptical cylinder for Ra = 104 . . . 106. Top panels show results at
γ = 15◦, while bottom panels present γ = 45◦. Nine contour levels are
shown with values between 0.1 and 0.9 in steps of 0.1.

When we look at the convection dominated cases (Ra = 105 and Ra = 106)
we observe that the symmetry is lost. Raising the tilt of the enclosure causes
movement of the line, which divides both vortices. The location of this dividing
line is important, as flow stagnates there and causes that area of the cylinder to
have the lowest heat transfer. We observe that the line is located at the point of the
cylinder, which is highest (has the larger z coordinate). Thus tilting the enclosure
against gravity (raising γ) moves the low heat transfer zone away from the top of
the cylinder (α = 90◦) towards the side (α = 0◦).

This can be also observed when we look at the heat flux distribution around the
circumference of the cylinder in Figure 4. On the other hand, in the conduction
regime Ra ≤ 104, the tilt against gravity does not affect the heat flux.

The heat flux distribution around the cylinder features two peaks at the sides of
the enclosure. Tilting the enclosure increases the heat transfer around most of the
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Figure 3: Streamlines ϕ = 0.1 Al2O3 nanofluid in 2D simulation with elliptical
cylinder forRa = 104 . . . 106. Top panels show results at γ = 15◦, while
bottom panels present γ = 45◦. Colour denotes velocity magnitude.

Table 2: Average Nusselt number values for an elliptical cylinder obtain in 2D and
3D simulations.

Ra 103 104 105 103 104 105

γ ϕ = 0.1, Al2O3 nanofluid ϕ = 0.2, Al2O3 nanofluid

2D 0 6.686 6.758 9.886 8.674 8.697 10.742
2D 15 6.686 6.763 9.935 8.674 8.699 10.750
2D 30 6.686 6.777 10.068 8.674 8.705 10.797
2D 45 6.686 6.799 18.434 8.674 8.713 10.991

3D 0 6.684 6.742 9.598 8.672 8.691 10.439
3D 15 6.684 6.746 9.644 8.672 8.693 10.456
3D 30 6.684 6.759 9.755 8.672 8.697 10.511
3D 45 6.685 6.776 9.962 8.672 8.704 10.683
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Figure 4: Heat flux around the circumference of the ellipsoidal cylinder expressed
as Nusselt number. Results of 2D simulations of ϕ = 0.2 Al2O3

nanofluid are shown for Ra = 104 (left), Ra = 105 (left) and Ra = 106

(right). Results for different angles γ against gravity are presented.

cylinder apart from the area around α = 0◦, where the heat flux is decreased. The
highest heat transfer is found at bottom left side of the cylinder (α = 180◦).

The heat transfer averages expressed as Nusselt number values are given in
Table 2 for 2D and 3D simulations. The data reveals heat transfer enhancement
when using nanofluids instead of pure water (for zero tilt the Nu for pure water
as Nu = 5.078 at Ra = 103, Nu = 5.293 at Ra = 104 and Nu = 8.936 at
Ra = 105).

The enhancement is largest when conduction is the dominating heat transfer
mechanism (Ra ≤ 104), where we observe about ≈ 30% increase in heat flux
for ϕ = 0.1 nanofluid and about ≈ 70% increase when using ϕ = 0.2 nanofluid.
As convection becomes important, relative enhancement is smaller, since the fluid
properties play a less important role in determining heat flux.

Comparison of 2D and 3D simulations shows, that 3D simulations yield slightly
lower heat transfer rates. Thus we may conclude, that this type of problem may be
investigated in 2D. The 3D effect will be more important in the case of unsteady
and turbulent natural convection.

6 Summary

The paper presents a boundary element based numerical method for simulation
of flow and heat transfer of nanofluids. The Navier–Stokes equations are used
in velocity-vorticity form. Special consideration was given to the algorithm for
determining the boundary vorticity values at an arbitrary 3D boundary surface,
which is based on the boundary-domain integral kinematics equation.

The developed method has been used to study nanofluid heat transfer
enhancement for the case of a cylinder in an enclosure. An elliptical cylinder was
considered for various Rayleigh number values and inclinations against gravity.
We found that the use of nanofluid enhances heat transfer the most in the case,
where the majority of the heat is transferred by conduction. In cases, where
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convection is the dominant heat transfer mechanism, the heat transfer enhancement
due to the use of a nanofluid is lower. Tilting the elliptical cylinder against gravity
increases the heat transfer rate and changes the flow structure. The increase is
small in flows, where conduction dominates, while it is larger in convection
dominated flows. Furthermore it changes the locations on the cylinder, where
lowest heat transfer is observed. Comparison of 2D and 3D simulations shows,
that 3D simulations yield slightly lower heat transfer rates. The difference is very
small for conduction dominated flows, while in convection dominated flows it is
larger. As the differences are small, 2D simulations may be used to analysis such
problems.
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