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Abstract 

The subject matter of this paper relates to general laminates comprising 
orthotropic layers with arbitrarily oriented material axes. Fundamental solutions 
are derived for the thin laminated plate theory based on Kirchhoff hypothesis. 
The analysis relies on Fourier transforms whose inverses are obtained using 
contour complex variable integration of analytic functions. This process allows 
the derivation of explicit and compact forms for the fundamental solutions which 
are subsequently introduced into suitable reciprocity relations to obtain boundary 
integral equations for the general laminate coupled extension-flexure problem. 
Keywords: fundamental solutions, general laminate, Fourier transform, residue 
theorem. 

1 Introduction 

General analytical solutions for laminated plates, based on the classical 
lamination theory, are rather rare and restricted to rectangular plate domains. 
Provided that the fundamental solutions of the respective governing partial 
differential equations are available, numerical solutions accounting for the 
possible coupling between extensional and flexural deformation can be obtained 
by the boundary element method (BEM), which would also deal with plates of 
arbitrary shape.  
     Previous nonlinear BEM analyses of general laminates [1, 2] relied on the 
fundamental solutions of the two uncoupled, extensional and flexural problems. 
Compact expressions for these solutions and the other kernels arising from them 
are given in earlier articles on BEM applications to the symmetrically laminated 
plate problem [3]. The integral equations of the respective BEM formulations of 
the general laminate problem included irreducible domain integrals requiring 
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additional domain modelling for the generation of a consistent system of 
algebraic equations.  
     For a genuine BEM solution, the fundamental solutions for the coupled 
problem are therefore essential. A first attempt at deriving such solutions was 
made by Becker [4] by representing the three displacement components in terms 
of complex potentials and their derivatives; the rather laborious process required 
the determination of four complex constants satisfying eight equilibrium and 
continuity conditions. No explicit forms of the fundamental solutions and their 
derivatives were obtained although plots of associated forces and moments were 
provided. More recently, Hwu [5] adopted a similar approach with the stress 
resultants being represented in terms of stress functions; this process led to 
fundamental solutions in explicit forms but still requiring expressions of 
considerable complexity for their description. A corresponding BEM formulation 
of the coupled extensional-flexural problem was developed by the same author 
[6]. 
     In this paper, an alternative approach for the derivation of the fundamental 
solutions of the general laminate problem is adopted. The procedure is based on 
Fourier transforms and complex function integration. The problem is formulated 
in terms of the in-plane displacements and lateral deflection. In contrast to the 
solutions mentioned above, which applied unit moments about each co-ordinate 
direction, a unit moment about a single arbitrary in-plane direction was 
considered in the present analysis. Explicit and compact forms for the two in-
plane displacements, the deflection and its gradient relative to an arbitrary 
direction were obtained. These solutions are more consistent with classical 
formulations of plate stretching and bending problems; they were subsequently 
introduced into an appropriate reciprocity relation to yield boundary integral 
equations that can be solved by the standard BEM procedure. 

2 Theory 

The derivation of the classical lamination theory was based on Kirchhoff’s thin 
plate assumptions. The theory comprises the constitutive equations 

 N = A + B  (1)

 M = B + D , (2)

the in-plane strain-displacement and curvature-deflection relations 

  = ½(u + u (3)

  = – w,, (4)

and the equilibrium equations 

 N, + f = 0 (5) 

 M, + q = 0. (6) 
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     Tensor notation and an x1-x2 Cartesian frame of reference have been used so 
that the membrane forces are represented by N, the bending moments by M, 
the mid-plane strains by  and the curvatures by , the in-plane 
displacements by u and the transverse deflection by w, where all Greek indices 
range from 1 to 2 and the summation convention over repeated indices has been 
adopted. Moreover, a comma followed by a subscript represents differentiation 
with respect to the corresponding co-ordinate; for example, u, means u/x. In 
eqns (1) and (2), the material constants A are the extensional stiffness 
coefficients, D the flexural stiffness coefficients and B the bending-
stretching coupling coefficients. In eqns (5) and (6), f and q are the in-plane 
body forces and the lateral pressure, respectively. 
     Substitution of eqns (3) and (4) into eqns (1) and (2) allows the constitutive 
equations to be written in terms of in-plane displacements and deflection: 

 N = Au – B w, (7)

 M = B u – D w, (8)

Finally, substitution of eqns (7) and (8) into eqns (5) and (6) allows the 
equilibrium equations to be written in terms of in-plane displacements and 
deflection: 

 Au – B w, + f = 0 (9)

 –B u + D w, = q (10)

     The objective, in this paper, is the derivation of the fundamental solutions for 
the linear system of differential eqns (9) and (10). 

3 Fundamental solutions 

3.1 In-plane extension 

The fundamental solution ,u
 w

 in this case satisfies 

 A ,u 
  – B ,w 

  + (x–) = 0 (11) 

 –B ,u 
  + D ,w 

  = 0 (12) 

where x(x1, x2) is the field point, (1, 2) the source point in an infinite domain 
∞, as shown in fig. 1;  is the Kronecker delta and (x – ) the Dirac delta 
function so that the product (x–) represents unit in-plane forces acting 
along x at (1, 2).
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Figure 1: Infinite laminated plate under unit forces/moment at source point P(). 

 
     In a two-dimensional space, the Fourier transforms of the dependent variables 
are given by [7] 

 i1
ˆ e d

2π
u u 






   ζ x  

 i1
ˆ e d

2π
w w 






   ζ x  

where (1, 2) represents the independent variable vector in the Fourier space. 
Taking the Fourier transforms of the left-hand sides of eqns (11) and (12) leads 
to the algebraic system of equations 

 –A û  – iB  ŵ  + ie
2π
 ζ ξ  = 0 (13) 

 –iB  û  + D  ŵ  = 0 (14)

for the three transformed displacement functions associated with a unit force in 
the x direction. For more clarity, the system of eqns (13) and (14) is also written 
in matrix form: 

1 1 1 2 1 1 1 i

2 1 2 2 2 2 2

1 2

i ˆ
e

ˆi
2π

ˆ 0i i

A A B u

A A B u

wB B D

             

             

              

       
       

         


               
           

ζ ξ
 (15) 

so that its solution can be expressed in terms of determinants in the form 

 

1 1 2 1 i

1 2 2 2 2

2

i
1 e

ˆ i
2π

0 i

A B

u A B

B D

        

         

         

     

     


      






ζ ξ
 (16) 

r

Q(x)

P()

o 

o 

x2, 2

x1, 1

∞

m
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1 1 1 1 i

2 2 1 2 2

1

i
1 e

ˆ i
2π

i 0

A B

u A B

B D

        

         

         

     

     


      






ζ ξ
 (17) 

 

1 1 1 2 1 i

2 1 2 2 2

1 2

1 e
ˆ

2π
i i 0

A A

w A A

B B

        

         

         

    

    


     




 

ζ ξ
 (18) 

where  is the determinant of the coefficient matrix on the left hand side of 
eqn (15). Expansion of this determinant gives 

 (1, 2) = [(A11 A22 – A21 A12)D – (A11 B2 – A21 B1)B2  

 + (A12 B2 – A22 B1)B1]  (19) 

Thus (1, 2) is an 8th order polynomial in either 1 or 2 whose coefficients are 
expressed in terms of the material constants. Expansion of the determinants on 
the right-hand sides of eqns (16)-(18) results in similar polynomial expressions 
g(1, 2) and h(1, 2), of 6th and 5th order, respectively, so that 

 
i

1 2

1 2

( , ) e
ˆ

( , ) 2π

g
u




 
  




ζ ξ
 (20) 

 
i

1 2

1 2

i ( , ) e
ˆ

( , ) 2π

h
w 


 
  




ζ ξ
 (21) 

     The fundamental solutions can now be obtained as the inverses of their 
Fourier transforms given by eqns (20) and (21): 

 1 2-i -i ( )
2

1 2

( , )1 1
ˆ( , ) e d e d ( )

2π ( , )4π

g
u u 
 

 

 
 

  
 

     ζ x ζ x ξx ξ ζ  (22) 

 -i -i ( )1 2
2

1 2

i ( , )1 1
ˆ( , ) e d e d ( )

2π ( , )4π

h
w w 
 

 

 
 

  
 

     ζ x ζ x ξx ξ ζ  (23) 

The integrations with respect to  on the right-hand sides of eqns (22) and (23) 
are performed by separation of variables, that is, 

 1 1 2 2
1 2-i -i

1 22
1 2

( , )1
e d e d

( , )4π
r rg

u  


 
 

  

 


 
    

 1 1 2 2-i -i1 2
1 22

1 2

( , )i
e d e d

( , )4π
r rh

w  


 
 

  

 


 
    

where r = x – . Integration with respect to 2 is performed using complex 
variable calculus [8]. Considering first the solution for the in-plane 
displacements, a complex variable z = 2 + i is introduced and a complex 
function F(z) is defined as 

 2
1 -i

1

( , )
( ) e

( , )
r zg z

F z
z

 
 

  (24) 
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which is integrated around the contour shown in fig. 2 comprising the segment of 
the real axis from –R to R and the semicircle CR in the upper half of the complex 
plane. 

 

Figure 2: Contour for complex function integration. 

     Thus, for any value of R, 

 2 2
1 2 -i

2
1 2

( , )
e d ( )d 2πi Res( )

( , )
R

R
r

k
kR C

g
F z z a  


  

     

where ak represent the poles of F(z) within the contour. It has been shown [8] 
that the contour integral along the semi-circle on the left-hand side tends to zero 
as R goes to infinity provided that r2 < 0. As R increases, the semicircle expands 
and eventually encompasses all the poles of F(z). To determine the residues 
associated with these poles, it is noted that the 8th order polynomial (1, z) has 
four pairs of distinct complex conjugate roots [9] which can be easily expressed 
in terms of 1 by introducing the parameter  such that z = 2 = 1; this 
transforms eqn (19) into 

 (1, z) = 8
1 () 

The roots of () are represented by 

 i , i , 0; 1, 2,3, 4k k k k k k k k                 

and the denominator in eqn (24) can thus be written 

 
4

1 2 8 2 1 2 1
1

( , ) ( )( )i i
i

         


    

where 8 is the coefficient of 8 which can be expressed explicitly in terms of 
material constants. Since 1 varies from −∞ to ∞ in the subsequent integration, it 
is, at this stage, necessary to distinguish between 1 being positive or negative. 

(a) 1 > 0 
     In this case, F(z) has four poles k1 of order 1 (simple poles) in the upper 
half-plane and the respective residues are 

 Res(k1) = 
2 1
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i
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8 1
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where 

 
4

1,
( )( )k k k i k i

i i k
     

 
    

Thus 
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(b) 1 < 0 
     In this case, the complex conjugates of k, multiplied by 1, are the four 
simple poles of F(z) in the upper half-plane; hence,  
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It is thus possible to obtain the inverse transform given by eqn (22) over the 
whole range of 1: 

 
1-i4

1
1 08 1

( )1 e
d

4π

kv
k

k k

g
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1-i04

1
18 1

( )1 e
d

4π

kv
k
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    (25) 

where vk = r1 + kr2. By substituting 1 = s in the first integral of the right hand 
side of eqn (25) and 1 = –s in the second, it is possible to show that the second 
term is simply minus the complex conjugate of the first. This leads to the real 
expression 

 
-i4

1 08

( )1 e
Re d

2π

ksv
k

k k

g
u s

s





 






 
   

  
 

     Since r2 < 0, Re(–ivk) < 0; thus exp(–ivks) is bounded. Under this condition, 
the Cauchy principal value of this divergent integral can be obtained by making 
use of a property of the Laplace transforms [8], which leads to 

 P
-i

0

e
d

ksv

s
s



 = –ln vk  (26) 

Thus, finally, the fundamental solutions for the in-plane displacements is 
provided in the form of the real functions 

 
4

18

( )1
Re ln

2π
k

k
k k

g
u v



 





 
   

 
 (27) 

     If r2 > 0, for the contour integral over CR to tend to zero as R goes to infinity, 
the semicircle should lie in the lower half-plane. The process described above is 
repeated leading to the same final result. 
     The inverse Fourier transform of the deflection given by eqn (23) is also 
integrated by separation of variables. Integration with respect to 2 is performed 
by the same process as that applied for the in-plane displacements with g 
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replaced by h. Since the latter is a 5th order polynomial, the square of 1 appears 
in the denominator of the residues and the fundamental solution for the 
deflection becomes 

 
1-i4

12
1 08 1

( )i e
d

4π

kv
k

k k

h
w








  





  

1-i04

12
18 1

( )i e
d

4π

kv
k
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h 
 


   

    

Making again the substitutions 1 = s and 1 = –s in the first and second integral 
of the right hand side of the latter equation results in 

 
-i4

2
1 08

i ( )1 e
Re d

2π

ksv
k

k k

h
w s

s





 






 
   

  
  

Integration by parts and the application of the previously obtained result given 
by eqn (26), leads to 

 P
-i

2
0

e
d

ksv

s
s



 = –ivk ln vk (28) 

Hence the fundamental solution for the deflection due to in-plane forces is 

 
4

18

( ) ln1
Re

2π
k k k

k k

h v v
w 



 





 
  

 
  (29) 

 

3.2 Flexure 

The fundamental solution for plate bending satisfies 

 A ,u 
  – B ,w 

 = 0 (30) 

 –B ,u 
  + D ,w 

  = (x–) (31)
where 

 1(x–) =  (x–) and 2(x–) =
)(

)(




m
 x

 

The two infinite plate deflections and associated in-plane displacements at a field 
point Q(x) governed by eqns (30) and (31) are interpreted as [10]:  

1 ,u 


1w are due to a transverse unit point force at the source point P(), 

2 ,u 


2w are due to a unit moment at P about the direction normal to unit 

vector m as schematically shown in fig. 1. 
     Taking the Fourier transforms of both sides of eqns (30) and (31) gives 
 –A û  – iB  ŵ  = 0 (32) 

 –iB  û  + D  ŵ  = ie
2π

b ζ ξ  (33)

where b1 = 1 and b2 = –ikmk. The solution of the system of eqns (32) and (33) 
gives the expressions 
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where  and  are, respectively, 5th and 4th order polynomials in either1 or 2 
while (1,2) is still given by eqn (19). The process of finding the inverse 
transforms of eqns (34) and (35) follows the same steps as in the case of 
extension. Thus, separation of variables gives 

 1 1 2 2
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Contour integration with respect to 2 results in the following expressions 
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For  = 1 and b1 = 1, eqns (36) and (37) can be reduced to  
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Successive integration by parts and the use of relation (26) gives 

 P
2-i

3
0

e
d ln

2

ksv
k

k
v

s v
s


  (38) 

Hence, use of eqns (28) and (38) leads to the final form of the fundamental 
solutions for the displacements due to unit lateral force 
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1
18

( )1
Re ln

2π
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k k
k k

u v v


 
 





 
  

 
  (39) 
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     For  = 2 and b2 = –i(m1 + km2)1, eqns (36) and (37) are similarly 
transformed to 
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Taking into account eqns (26) and (28) finally provides also the fundamental 
solutions for the displacements due to a unit moment about m: 
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It can be noted that eqns (43) and (44) are, respectively, the singular parts of the 
derivatives of eqns (39) and (40) with respect to m. 

4 Boundary integral equations 

BEM can now be applied to the analysis of a finite plate, whose domain is 
bounded by the contour  as shown in fig. 3. Apart for the in-plane body forces 
and the lateral pressure, the plate may also be subjected to various edge loads  
 

 

Figure 3: Laminate plate of arbitrary shape under edge traction p . 
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such as traction p . A BEM solution process can be developed by formulating 

first the reciprocity relations 

 ( , + , )d [ ( , ) , + ( , ) , ]dN u M w N u w u M u w w              
 

          (45) 

 ( , + , )d [ ( , ) , + ( , ) , ]dN u M w N u w u M u w w              
 

          (46) 

for the extensional and flexural problem, respectively. Taking into account the 
constitutive relations for both the actual, coupled as well as the fundamental 
states, eqns (45) and (46) are transformed to 
 ku() = ( , )uI u u 

 – ( , )wI w w
 – J(w, w

 ) + ( )df u qw  


    (47) 

 −kw() = ( , )uI u u 
 – ( , )wI w w

 – J(w, w
 ) + ( )df u qw  


    (48) 

where k = 1 or 1/2, depending on whether P() lies within  or it belongs to 
smooth portions of , respectively, and 

 w1= w,  w2 =
w

n




 

The right-hand sides of eqns (47) and (48) comprise the boundary integrals as 
well as a jump term which are defined by the equations 
 ( , )uI u u  = [ ( ) ( ) ]dp u u p u u s     


   (49) 

 ( , )wI w w = ( ) ( ) ( ) ( ) dn n n n

w w
V w w M w M w V w w s

n n

          
 (50) 

 J(w, w ) =
1
[ ( ) ( ) ]

K

j j j j
j

C w w C w w


   (51) 

where force Cj represents the discontinuity jump of twisting moment Mns at 
corner j and K is the number of corner points along . Implicit expressions for 
the various boundary variables in terms of displacement components have been 
given in previous articles on laminate stability analyses [1, 2]. The domain 
integrals on the right-hand sides of eqns (47) and (48) depend on the applied 
loading and can be easily calculated by either 2D quadrature over the domain or 
by converting them to boundary integrals through dual reciprocity. 

5 Conclusions 

It has been shown that the Fourier transform approach can be very effective in 
producing the fundamental solutions of the coupled plate extension-flexure 
problem in explicit and compact forms which could be easily evaluated and used 
in a BEM analysis of an arbitrarily loaded, finite laminated plate of general shape 
and anisotropy. The basis of a BEM formulation has been provided here but 
considerable work is still required. This includes the derivation of the additional 
kernels that appear in the boundary and domain integrals of eqns (47) and (48), 
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dealing with the complexities of boundary modelling and the development of a 
numerical algorithm that could be implemented through a computer program. 
     An initial validation of the derived solutions can be carried out by comparing 
their predictions with those of earlier analytical processes and formulas. The 
ultimate test for these fundamental solutions would be in the effectiveness of the 
corresponding boundary element formulations to provide reliable answers to 
practical laminated plate problems. One important type of failure of thin plates in 
engineering applications is buckling. The use of the new fundamental solutions 
will simplify earlier BEM stability and more general nonlinear analyses of 
laminates by removing the necessity of certain domain integrals although those 
due to nonlinearity will still remain irreducible. 
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