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Abstract 

This paper presents the use of the adaptive cross approximation (ACA) method 
for the acceleration of the classic time domain boundary element method (BEM) 
in 3-D elastodynamics. The main advantage of using ACA is that it is based only 
on the knowledge of the matrix entries; therefore no special treatment of the time 
domain fundamental solution is required when the coefficient matrix is 
approximated by using this approach. In order to discretize the boundary integral 
equation (BIE) we use the collocation method and eight-node discontinuous 
quadratic element. In the numerical examples, stability of the classic time 
domain BEM in terms of both the degree of discontinuity of the boundary 
elements and the time step size is tested, and the compression ratios of the 
coefficient matrices by using ACA along the time steps are studied. 
Keywords: boundary element, time domain, adaptive cross approximation, 
elastodynamics. 

1 Introduction 

The BEM is particular suitable for the numerical treatment of elastodynamic 
problems in semi-infinite or infinite domains since only the boundaries need to 
be discretized. In addition, the radiation condition is automatically satisfied. 
The corresponding BIE formulations have been well established in Laplace 
domain [1], Fourier domain [2] and in direct time domain [3, 4]. For review of 
the BEM formulations in elastodynamics and applications, one can refer to the 
literature [5, 6].  
     Compared with the Laplace domain BEM that requires an inverse 
transformation, the time domain BEM provides a direct assessment of the 
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investigated domains versus the time development. However, stability problems 
of the classic time domain BEM based on the analytic time stepping procedure 
have been observed and discussed [7]. In order to improve its stability, various 
techniques have been reported [8–11]. Besides, a Convolution Quadrature 
method (CQM) proposed in the literatures [12–13] has been successfully applied 
in the time domain BEM for dynamic problems in elastic, visco-elastic and poro-
elastic domains [14–17], due to its intrinsic stable feature and its ability to treat 
fundamental solutions in Laplace domain. 
     Conventionally, the BEM leads to a dense matrix. Solving such linear 
equation system by using standard direct or iterative solvers requires O(N 2) 
memory and O(N 2~ N 3) computations, where N is the number of unknowns. 
This is a main bottleneck for the BEM to treat large-scale problems. In order to 
improve its efficiency, several fast algorithms have been implemented in this 
field during the last several decades. Of particular interest are the fast multipole 
method (FMM) [18] and the adaptive cross approximation (ACA) method [19]. 
The FMM is an O(N) algorithm based on expanding the fundamental solution 
into series. Therefore, FMM requires proper expansion formulation of the 
fundamental solution, which is problem-dependent. The ACA however, is 
kernel-independent and easy to be applied directly for various problems.  
     In the field of fast BEM in elastodynamics, one can mention the FMM-BEM 
in frequency domain [20–22], the FMM-BEM in time domain [23], the ACA-
BEM in frequency domain [24] and the ACA-BEM in conjunction with CQM in 
time domain [25]. For the classic time domain BEM based on analytic time 
stepping procedure, one can note that its fundamental solutions are 
monotonically decreasing with the distance of r. This feature enables the ACA to 
compress the coefficient matrices at each time step. This paper presents the use 
of ACA to accelerate the classic time domain BEM in 3-D elastodynamics. The 
ACA is implemented at each time step to approximate the coefficient matrices 
with reasonably smaller memory and to accelerate the matrix-vector 
multiplications. The collocation method and the eight-node discontinuous 
quadratic element are used to discretize the BIE. In the numerical examples, 
parameters affecting stability of the classic time domain BEM are tested and 
determined, and efficiency of the ACA in terms of the memory requirement 
along the time steps is studied. 

2 Time domain BEM for 3-D elastodynamics 

The basic equations of the BEM for 3-D elastodynamics in time domain are 
briefly reviewed in this section. By assuming initial conditions and body forces 
to be zero, the time domain BIE governing elastodynamics in a 3-D homogenous 
domain is expressed as, 
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     In the above, t denotes time; x and y denote the source and field points at the 
boundary S, respectively; ui and ti are the boundary displacement and traction 
respectively; cij is 0.5 for smooth boundaries;  * , ; ,ijG x t y  and  * , ; ,ijT x t y  are 

displacement and traction fundamental solutions respectively for the 3-D 
elastodynamic problems. 
     In order to calculate the temporal integral of Eq.(1), the time axis is 
discretized into N steps inside which the boundary variables ui and ti are assumed 
to be vary linearly. Therefore, temporal integrations in Eq. (1) are done 
analytically.  
     In order to calculate the space integral of Eq. (1), we use collocation method 
and eight-node quadratic element. To deal with the strongly-singular integrals, 
the finite part integral is used. To satisfy its continuity requirements and to treat 
the corners in a simple manner, we adopt discontinuous elements from the 
literature [26] (see Fig. 1), where the positioning parameter  ( 0 1  ) stands 
for the degree of continuity. 
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Figure 1: Discontinuous eight node quadratic element. 

     After collocation, time and space discretization, Eq.(1) takes a matrix form, 
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where  G

 
and  T

 
arise from the integrations of the displacement and traction 

fundamental solutions respectively at the I-th time step. Herein the first number 
of the superscripts of  G

 
and  T  is used to distinguish between the parts inside 

the integral at I and I–1. 

3 ACA applied to time domain BEM 

This section summarizes basic idea of the ACA and procedures of the ACA 
applied to the time domain BEM. The ACA is an algebraic approximation 
method which is based only on the knowledge of the matrix entries. For a low 

rank matrix denoted by   m n
A , approximation work can be made by using the 

ACA [19], 
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       m n m k k n
A U V  (3) 

where ,k m n . Therefore, the matrix-vector multiplication is reduced from 

 O m n  to   O k m n in both memory and computations. There are 

commonly two types of ACA, namely the fully-pivoted and partially-pivoted 
ACA. The former approach requires all matrix entries to be calculated; the latter 
one requires only a small part of the matrix entries. For the vector problems such 
as 3-D elastodynamics, it is more convenient to calculate a set of matrix entries 
based on the element than to calculate a single entry. Therefore in this paper, the 
fully-pivoted ACA is applied. 
     Procedures of applying ACA to the time domain BEM are as follows 

Step 1: 

An adaptive tree is constructed based on the geometry information of the 
boundary elements. The elastic domain is then subdivided recursively into 
subdomains at various levels each containing a set of boundary elements. 

Step 2: 

At each time step, the coefficient matrices  G

 
and  T  are partitioned into sub-

matrices at various levels. Each sub-matrix arises from the interaction of two sets 
of boundary elements belonging to specific subdomains at Step 1. 

Step 3: 

For  G

 
and  T  at each time step, identify low rank sub-matrices

 
according to 

the associated geometrical and distance information of subdomains. Next for full 
rank sub-matrices, calculate directly; for low rank sub-matrices, perform ACA 
operations. 

     Attention should be paid when 1 2  G G  and 1 2  T T in Eq.(4) are 

approximated by using ACA. In this case, the corresponding sub-matrices are 
added up accordingly. In the case of a low rank sub-matrix added to another, the 
following direct combination is used, 
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(4) 
Step 4: 

At each time step, the boundary variables are obtained by solving the linear 
equation system using GMRES, in which the coefficient matrix-vector 
multiplications are approximated by ACA matrix-vector multiplications.  

4 Numerical examples 

A C++ code of the ACA-BEM for 3-D elastodynamics has been developed. In 
the following, a 3-D elastic rod of 2 2 4   is considered. The rod is fixed at one 

484  Boundary Elements and Other Mesh Reduction Methods XXXVI

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press



end and given a pressure of     p t H t  at the opposite free end, where  H t  

is Heaviside function. The rest boundaries are free. The Young’s modulus and 
Poisson’s ratio are 100.0 and 0.0, respectively; the density is 1.0; in GMRES the 
relative error for convergence is set to be 10-5; the error for stop in the fully-
pivoted ACA is set to be 10-5.  
     First, stability of the time domain BEM in terms of the degree of discontinuity 
of the boundary element (see   in Fig. 1) and the time step size is tested. The 
time step size is represented by defining a dimensionless parameter as, 

1



e

c t

L
 (5) 

where c1 is the compression wave velocity and Le is the representative element 
length. The rod is discretized into 40 discontinuous elements as shown in Fig. 2, 
with DOF = 960. We choose 1/ 2,2 / 3   and 0.1 ~ 0.8   (with increment of 

0.1) respectively for the test. It is found that only a few parameter combinations 
result in relative good stabilities in longitudinal displacement at the free end, 
namely 1/ 2, 0.5,0.8    and 2 / 3, 0.6,0.7   . In addition, 1/ 2 

 leads to much earlier instabilities than 2 / 3  , as shown in Figs. 3 and 4 in 
comparison with analytic results. Therefore, the combination of 2 / 3, 0.7    

is determined for the following study. 
 

X Y

Z

 

Figure 2: The rod with 40 discontinuous elements. 

 

Figure 3: Displacement vs. time ( 1/ 2, 0.5,0.8   ). 
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Figure 4: Displacement vs. time ( 2 / 3, 0.6,0.7   ). 

     In the second test, the rod is meshed with 90 (DOF = 2160) and 160 
(DOF=3840) elements respectively. The compression ratios of [G 1], [T 1] and  
[G 1+ G 2] by using ACA versus the time step are shown in Figs. 5–7. It is shown 
that larger DOF results in better compression ratio. It is also observed, as 
expected, that the trend of the compression ratio along the time axis follows that 
of the share of non-zero entries in the coefficient matrices. 
 

 

Figure 5: Compression ratio: [G 1]. 

 

Figure 6: Compression ratio: [T 1]. 
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Figure 7: Compression ratio: [G 1+ G 2]. 

5 Conclusions 

The use of ACA as a fast solver for the classic time domain BEM in 3-D 
elastodynamics was presented. The collocation method, linear time step and 
eight-node discontinuous quadratic element were used for discretization. The 
numerical tests showed the effects of some parameters on stability of the classic 
time domain BEM and studied compression ratios of the time domain BEM 
matrices by using ACA. 
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