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Abstract

The kernel-independent fast multipole method (KIFMM) proposed by L. Ying
et al. is of almost linear complexity. In the original KIFMM the time-consuming
M2L translations are accelerated by FFT. However, when more equivalent points
are used to achieve higher accuracy, the efficiency of the FFT approach tends to
be lower because more auxiliary volume grid points have to be added. In this
paper, all the translations of the KIFMM are accelerated by using the singular value
decomposition (SVD) based on the low-rank property of the translating matrices.
The acceleration of M2L is realized by first transforming the associated translating
matrices into more compact form, and then using low-rank approximations. By
using the transform matrices for M2L, the orders of the translating matrices in
upward and downward passes are also reduced. The improved KIFMM is then
applied to accelerate BEM. Numerical results show that, compared with the
original KIFMM, the present method can reduce about 40% of the iterating time
and 25% of the memory requirement.
Keywords: boundary element method, kernel-independent fast multipole method,
singular value decomposition, matrix compression

1 Introduction

The boundary element method (BEM) has become a promising numerical method
in computational science and engineering. Despite many unique advantages, like
the dimension reduction, high accuracy and suitability for treating infinite domain
problems, a major disadvantage of the BEM is its dense system matrix which
solution cost is prohibitive in large-scale problems. During the past three decades,
several acceleration methods have been proposed to circumvent this disadvantage.
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Representative examples are the fast multipole method (FMM) [1], wavelet
compression method [2], H-matrix [3], adaptive cross approximation (ACA) [4],
pre-corrected FFT [5], etc. Among them the FMM is no doubt the most outstanding
one.

The conventional FMM is originally proposed to accelerate the N -body
simulations, which requires the analytical expansions of the kernel functions. This
poses a severe limitation on its applications to many problems where the analytical
expansions are hard to be obtained. Besides, this makes it difficult to develop a
universal FMM code for real-world applications. To overcome this drawback, the
kernel-independent FMM (KIFMM) has been proposed in the past decade [6–8].
A salient feature of the KIFMM is that the expansion of the kernel function is no
longer required. Instead, only the kernel value evaluations are needed. Therefore,
the structure of the FMM acceleration algorithm is in common for many typical
problems.

In this paper, the KIFMM proposed by Ying et al. [6] is concerned. This method
uses equivalent densities in lieu of the analytical expansions. It provides a unified
framework for fast summations with the Laplace, Stokes, Navier and similar kernel
functions. Due to its ease-of-use and high efficiency, it has attracted the attention
of many researchers [9–11].

The moment-to-local (M2L) translation is the most time-consuming part of the
FMM [7, 8, 12–15]. In the KIFMM [6] the M2L translation is accelerated by the
fast Fourier transform (FFT), leading to O(p3 log p) computational complexity,
where p is the number of equivalent points along the cube side. However, one
should note that the efficiency of the FFT approach tends to become lower when
p increases. This is because the equivalent points lie only on the boundary of each
box, while to use the FFT Cartesian grid points interior the box must be considered
as well. In this paper, the M2L in KIFMM is compressed and accelerated using
the singular value decomposition (SVD); see Section 3. This method is built
on the fact that the M2L matrices are typically of very low numerical ranks.
Our numerical experiments, including those in Section 5, show that the proposed
method is more efficient than the FFT approach. Another advantage of the SVD
accelerating approach is that it is more flexible than the FFT approach, because
the later requires the equivalent and check points to be equally spaced while this is
not needed in the SVD approach. Moreover, the orders of the translating matrices
in the upward and downward passes can also be reduced by using the compressing
matrices for M2L, leading to further reduction of the CPU time and memory usage.

The original KIFMM in [6] is designed to accelerate the potential evaluation for
particle simulations. Recently, it was applied to solve boundary integral equations
(BIEs) in, e.g., blood flow, molecular electrostatic problems [16–18]. It is noticed
that the central idea of all those works is to translate the far-field interactions
to a particle summation formulation so that the original KIFMM can be used in
a straightforward manner. For example, in [17], the Nyström method is used to
discretize the BIE in order to obtain the particle summation form.

In this paper, the KIFMM is used to accelerate the BEM. This work is nontrivial
since the KIFMM can not be straightly used in BEM due to the presence of
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elements, let alone to maintain the accuracy and efficiency. For example, the
equivalent and check surfaces are crucial components of the KIFMM. In the
original KIFMM these surfaces can be set as the surfaces of each cube. However,
in BEM setting this choice would deteriorate the accuracy, because the boundary
elements belonging to a cube can often extrude from the cube; see Section 4 for
the details in choosing those surfaces.

2 Basic idea of the KIFMM

The KIFMM was proposed in [6] to solve the potential problems for particles.
Here its framework is briefly reviewed.

As the original FMM, the KIFMM is also implemented on a spatial tree
structure, which can be constructed by first defining a root level cube containing
all the particles, then subdividing it recursively until each leaf cube contains non
more than s particles. For each cube C, we define its near field N C as the union
of the cubes in the same level that share at least one vertex with C, its far field FC

as the complement of N C , and its interaction field I C = FC\FB , where B is
the parent cube of C. The union of the cubes at the same level in I C is called its
interaction list.

Generally, in a FMM, the potentials induced by the sources in the near field
are computed directly, which is named as S2T translations. The potentials induced
by the sources in the far field are efficiently evaluated by a series of translations,
named as S2M, M2M, M2L, L2L and L2T translations. The main feature of the
KIFMM lies in that the above translations are performed using equivalent densities
on the equivalent points and check potentials on the check points, while in the
conventional FMM the translations are performed using the multipole expansions
and local expansions. The equivalent points and check points are sampled on the
equivalent surface and check surface, respectively, which can be defined as the
surfaces of cubes, as suggested in [6]. In the upward pass of KIFMM, for each
cube C, if C is a leaf cube, its upward equivalent densities are translated from the
sources inside C by the S2M operator S; otherwise they would be translated from
the upward equivalent densities of its C’s children by the M2M operator M. In the
downward pass, the M2L operator K translates the upward equivalent densities
of C’s interaction list into C’s downward check potentials. And for each non-leaf
cube C, the L2L operator L translates the downward check potentials of C into
that of C’s children. When C is a leaf cube, the contribution of the sources in FC

for the potentials on the target points inside C are translated from the downward
check potentials of C by the L2T operator T. For the detail of the translations, we
refer to Ref. [6].

In summary, the potential p on the target points in a leaf cube induced by the
source densities q in its far field can be computed by

p = TLKMSq. (1)

where, S,M,K,L,T are the translation operators for S2M, M2M, M2L, L2L,
L2T, respectively.
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The M2L translation is the most time-consuming step in the KIFMM. It is
accelerated by FFT in the original KIFMM [6]. In its implementation auxiliary
points must be added inside the upward equivalent surface and the downward
check surface, although one only needs these on the surfaces. This makes the FFT
approach less efficient when the number of the equivalent points and check points
are large because the auxiliary points would account for a large proportion. To
overcome this drawback, in the next section, a SVD approach is proposed which
requires no auxiliary points, and can accelerate all the translations in KIFMM.

3 SVD-based acceleration for translations

Our new SVD-based accelerating technique consists of two steps, namely (1)
the matrix reduction for all the translation operators and (2) the low rank
approximation for the compressed M2L matrices. These are explained in detail
respectively in the following.

3.1 Matrix reduction

The compressing matrices for the matrix reduction step is constructed by the
scheme in [7] which is originally used to accelerate the M2L translations of
the black-box FMM. It should be noted our matrix reduction is distinguished
from [7] by that, the other translation operators are compressed into more compact
form as well, which could further improve the efficiency and reduce the memory
requirement.

Following [7], the compressing matrices are computed using the M2L matrices.
Suppose that the kernel function is translational invariant. The union of unique
translating matrices over all cubes in each level forms a set of 316 matrices. To
compress these matrices, first collect them into a fat matrix Kfat in which they are
aligned in a single row and a thin matrix Kthin in which they are aligned in a single
column, then perform SVD

Kfat =
[
K(1) K(2) . . . K(316)

]

= UΣ
[
V(1)T V(2)T . . . V(316)T

]
,

(2a)

Kthin =
[
K(1); K(2); . . . ; K(316)

]

=
[
Q(1); Q(2); . . . ; Q(316)

]
ΛRT,

(2b)

whereK(i) is the i-th translating matrix. Then it is explained that the M2L matrices
can be approximated by

K = U(UTKR)RT ≈ Ũ(ŨTKR̃)R̃T = ŨK̃R̃, (3)
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where, the compressing matrices Ũ and R̃ are consisted by columns corresponding
with dominant singular values that are not less than ε1‖Kfat‖2 = ε1Σ0,0 =

ε1Λ0,0, and K̃ is the compressed translating matrix.
Now consider the other translations in the upward and downward passes. Since

the columns of R̃ are orthonormal, thus R̃TR̃ = I. The potentials in I B generated
by the upward equivalent densities qB,u can be written as follows

KqB,u ≈ ŨK̃R̃TqB,u = ŨK̃(R̃TR̃)R̃TqB,u = ŨK̃R̃TqB,u
1 , (4)

where qB,u
1 = R̃R̃TqB,u is the projection of qB,u to the space spanned by the

columns of R̃. This suggests that qB,u
1 can approximately reproduce the potential

field in I C excited by qB,u. In other words, qB,u
1 can be taken as the new upward

equivalent densities for the potential field in I C .
For each cube B and its parent cube C, since I C lies outside I B , from

potential theory we know that qB,u
1 can also be used to reproduce the potential

field in I C , ie.,

ŨK̃R̃TMqB,u ≈ ŨK̃R̃TMqB,u
1

= ŨK̃R̃TMR̃R̃TqB,u = ŨK̃R̃TMR̃R̃TSq

= ŨK̃M̃S̃q,

(5)

where, M̃ = R̃TMR̃ is the new translating matrix for M2M; S̃ = R̃TS is the new
translating matrix for S2M.

From the symmetry of the algorithm, ie., the upward pass and the downward
pass playing the same role in the algorithm, we know that the downward pass can
be transformed by Ũ similarly. Thus, L̃ = ŨTLŨ is the new translating matrix for
L2L; T̃ = T̃Ũ is the new translating matrix for L2T.

Since both the transformation matrices Ũ and R̃ are thin matrices, the new
translating matrices S̃, M̃, L̃ and T̃ are smaller than their original forms, and thus
the computational cost of the upward and downward passes can be reduced.

The threshold ε1 affects the balance between the computational cost and the
accuracy of the algorithm. The induced error in each M2L translation is of order
ε1, and the total error is approximately Lε1 [6]. In order to maintain the error
decreasing rate of BEM with piecewise constant element, Lε1 should decrease by
a factor of 2 with each mesh refinement Lε1 ∼ 2−L. In this paper, ε1 is chosen by

ε1 = C1
2−L

L
, (6)

where, C1 is a constant coefficient.

3.2 Low rank approximation for M2L

After the dimension reduction, we found that most of the compressed M2L
matrices K̃ are still of low numerical ranks, as shown in Figure 1. This fact

Boundary Elements and Other Mesh Reduction Methods XXXVI  435

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press



indicates that the computational cost of M2L can be further reduced by using the
low rank decomposition of compressed M2L matrices K̃(i). Here the low rank
decomposition is computed by SVD, so that optimal rank can be obtained

K̃(i) ≈ Û S(i)ˆ(i)(Q̂(i)) =T Û V(i) ˆ (i), (7)

where, the matrices with hat is the truncated matrices consisted by the columns
corresponding with dominant singular values that is no smaller than ε2‖K0,fat‖2.
Since the number of the translating matrices is O(1), this computational overhead
is small.
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Figure 1: Numerical rank distribution of M2L matrices K̃84×84 in numerical
example 5.1 with N = 2097152, p= 8, C1 = 0.1, C2 = 100.

The error introduced by this approximation is determined by ε2. Denote K̂(i) =
Û(i)V̂(i). From the truncating scheme, there exists

‖K̂(i) − K̃(i)‖2 ≤ ε2‖Kfat‖2.
Since ‖A‖max ≤ ‖A‖2 ≤ √

mn‖A‖max for arbitrary m× n matrix A, thus

‖K̂(i) − K̃(i)‖max ≤ ε2‖Kfat‖2.
Let K̂fat and K̃fat denote the fat matrices for K̂ and K̃, respectively, which are
constructed similarly as Kfat. It is easy to know that

‖K̂fat − K̃fat‖max ≤ ε2‖Kfat‖2.
Since the dimension of K̃fat is p̃× 316p̃, where p̃ is the dimension of K̃, and

‖K̂fat − K̃fat‖max ≥ 1√
316p̃2

‖K̂fat − K̃fat‖2,

one has
‖K̂fat − K̃fat‖2 ≤ ε2

√
316p̃2‖Kfat‖2.
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Therefore, the error introduced by the low rank approximation is ensured to be of
same order as ε1 by letting

ε2 ∼ ε1√
316p̃2

∼ ε1
p̃
.

In our scheme, it is defined by

ε2 = C2
ε1
p̃
, (8)

where C2 is a constant coefficient.
Generally the compression (3) is performed for M2L translating matrices

at all levels. When the kernel is homogeneous, the M2L matrices in different
levels can be scaled to each other. Therefore, the matrix reduction and low rank
approximation has only to be implemented on the M2L operators of one level, and
the operators in other levels can be obtained by scaling.

4 KIFMM for BEM

Now let us discussion the application issues of KIFMM to accelerating BEM. The
main difference with the KIFMM for particle summations lies in the definition of
equivalent and check surfaces, since now the sources distribute continuously on
the boundary instead of on discrete points.

C
yC, u

Figure 2: The elements and the upward equivalent surface related to a leaf cube.

In this paper, the BIE is discretized with piecewise constant triangular elements.
The centroids of the triangles are used as the reference points to construct the
octree. Figure 2 illustrates a leaf cube C in the octree. The union of all the elements
whose centroids lying in C is denoted by Γ(C). Obviously in the S2M translation,
the upward check potentials of each leaf cube C has to be computed by quadrature
over the triangles on Γ(C).

It is shown in Figure 2 that Γ(C) may extrude from C. In order to ensure
the existence of the equivalent densities and the accuracy of the far field
approximation, the definition of the upward equivalent surface yC,u and the
upward check surface xC,u has to satisfy the following restrictions:
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1. yC,u and xC,u lie between Γ(C) and FC ; xC,u encloses yC,u;
2. yC,d and xC,d lie between C and Γ(FC), with Γ(FC) being the union of

all elements that belongs to FC ; yC,d encloses xC,d.
The equivalent and check surfaces for BEM are defined in a similar way with

that in [6]. That is, for each cube C with side length 2r, yC,u is defined as the
surface of the concentric cube with halfwidth (1 + d)r, and xC,u is defined as
the surface of the concentric cube with halfwidth (3 − 2d)r. The difference is
that, in [6], d is chosen as a user-defined small value. However, in the KIFMM
accelerated BEM, d has to be chosen large enough to satisfy the above restrictions.
For a quasi-uniform element partition, assume that the size of the element is h and
each leaf cube contains at most s elements, then the halfwidth of the leaf cubes in
the finest level is proportional with

√
sh. The distance between the out-most vertex

and the cube surface is no larger than h, thus d is of order

d ∼ O
(
(
√
s+ 1)h√
sh

− 1

)
= O

(
1√
s

)
.

So, in this paper d is evaluated as

d = Cd
1√
s
, (9)

where, Cd is user-defined constant. Our numerical experience indicates that Cd =
0.5 is proper for most problems.

The M2M, M2L, L2L and L2T translations in the KIFMM BEM is exactly the
same with the KIFMM for particle summations. Obviously, the total computational
complexity of our KIFMM BEM remains O(N).

5 Numerical examples

The performance of our SVD-based accelerating technique and the kernel-
independent fast multipole BEM for Laplace BIEs is demonstrated by two
numerical examples. The resultant linear systems are solved by GMRES solver.
All simulations are carried out on a computer with a Xeon 5440 (3.00 GHz) CPU
and 28 GB RAM.

5.1 Electrostatic problem

In this subsection, the electric charge density on an ellipsoidal conductor is
computed by ∫

Γ

G(x,y)q(y)dy = f(x), x ∈ Γ, (10)

where, G(x,y) = 1/(4π|x− y|) is the fundamental solution of the Laplace
equation. The ellipsoid can be described by (x1/2)

2 + x2
2 + (x3/3)

2 = 1. The
analytic solution can be expressed analytically using ellipsoidal coordinates. The
convergence tolerance for GMRES solver is set to be 10−6. The surface of the
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ellipsoid is first discretized into N = 2048 triangular elements, then the mesh is
refined 5 times. The finest mesh has N = 2097152 elements.

Table 1: Errors obtained with N = 2097152 and different p, C1 and C2.

p FFT
C1 = 0.1 C1 = 0.5 C1 = 0.1 C1 = 0.1 C1 = 0.1

C2 = 0 C2 = 0 C2 = 10 C2 = 100 C2 = 500

4 0.004 880 0.004 880 0.004 887 0.004 883 0.004 896 0.005 296
6 0.000 790 0.000 791 0.001 227 0.000 791 0.000 793 0.000 932
8 0.000 789 0.000 790 0.001 014 0.000 790 0.000 793 0.000 988

Table 2: CPU times in each iteration Tit and the total memory usage with N =
2097152, C1 = 0.1 and different p, C2

p
Tit (s) Memory usage (MB)

FFT C2 = 10 C2 = 100 FFT C2 = 10 C2 = 100

4 18.25 30.12 24.32 7 504.3 7 598.9 7 597.7
6 76.16 45.51 34.79 11 669.0 8 861.7 8 859.8
8 198.03 44.89 34.73 17 924.3 8 866.4 8 864.6

Table 3: Results of the fast BEM accelerated by FFT and SVD with p = 6. In the
SVD accelerating technique, C1 = 0.1 and C2 = 10.

N
Relative error Tit (s) Memory usage (MB)

FFT SVD FFT SVD FFT SVD

2 048 0.032 901 0.033 082 0.05 0.01 19.8 8.1
8 192 0.014 001 0.014 081 0.31 0.06 55.8 28.3

32 768 0.006 641 0.006 681 1.11 0.30 186.4 119.5
131 072 0.003 182 0.003 220 4.75 1.78 736.5 493.4
524 288 0.001 579 0.001 587 13.26 8.56 2 917.5 2 062.5

2 097 152 0.000 790 0.000 791 76.16 45.51 11 669.0 8 861.7
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The accuracy and efficiency of the present KIFMM BEM are mainly determined
by parameters C1 in (6) and C2 in (8). Basically, with larger C1 and C2, the
computational cost would be lower, while on the other hand the error would
become greater. Consequently, the choices of C1 and C2 are determined by the
tradeoff between the accuracy and the efficiency.

First the influence of C1 on the accuracy of the algorithm is tested by the model
with the finest mesh, which could get the best accuracy. Three cases with C1 being
0, 0.1 and 0.5 and C2 = 0 are computed. The results corresponding to C1 = 0 are
computed using the original FFT-accelerating scheme in [6]. The resulting errors
are listed in Table 1. It is shown that C1 = 0.1 is nearly optimal to maintain the
accuracy. The error with p = 4 is much larger, this is because the error of the
algorithm is also bounded by p, see [6] for the details. The errors with p = 6 and
p = 8 are almost the same, which indicates for this numerical example, p = 6 is
sufficient to maintain the accuracy of the BEM.

The influence of C2 is studied by setting C2 = 10, 100, 500 while C1 = 0.1.
In Table 1 it can be seen that for C2 = 10 and C2 = 100 the results keep almost
the same errors; while for C2 = 500 the errors increase. Therefore, C2 should
be chosen between 10 and 100 to maintain the accuracy. The CPU times Tit in
each iteration and the total memory usage of the two methods, FFT-accelerating
approach and the SVD accelerating approach, are listed in Table 2. It is shown that
the iteration with the SVD approach can be considerably more efficient comparing
with the FFT approach, especially for large p. The reason is that, when p is
increased, more auxiliary points has to be added in the FFT approach, which makes
it less efficient. However, the efficiency of the SVD accelerated algorithm is mainly
determined by ε1 and ε2, which is independent with p. Besides the CPU time, the
memory usage can also be considerably reduced in the SVD approach, since the
translating matrices used in S2M and L2T are compressed into more condensed
form by the scheme in Section 3.1.

Now the results with p = 6, C1 = 0.1, C2 = 10 and different DOFs are listed
in Table 3. It is shown that the computational cost increases linearly with the DOF.
The CPU time cost in each iteration can be reduced about 40% and the memory
cost can be reduced about 25% by SVD approach compared with the original FFT
approach while maintaining the accuracy of BEM. These parameters will be used
in the next numerical example.

5.2 Heat conduction problem

To demonstrate the ability of the present KIFMM BEM for solving real-world
problems, a steady-state heat conduction analysis of a engine block is solved
here; see Figure 5.2. The temperature field is governed by the Laplace equation.
The conductivity of the engine block is λ = 80W/(m ·◦C). The temperature of
the inner surface of the oblique tube and the temperature of the bottom surface
are set to be 75◦C and 100◦C, respectively. Convective condition with constant
film coefficient h = 10W/(m2 ·◦ C) and constant bulk temperature T0 = 22◦C
are applied to the other surfaces. The KIFMM BEM is applied to compute the
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temperature field with nearly 4754670 elements. For comparison, this problem
is also solved by finite element method (FEM) with 698317 tetrahedral elements,
1015653 nodes. The converging tolerance for GMRES solver is 10−4. It converged
after 97 iterations. Each iteration cost about 108 s, and the overall computing
time is 5.09 h. The memory consumption is 24.4 GB. The result is exhibited
in Figure 3(b). It can be seen that the temperature distribution obtained by the
KIFMM BEM agrees very well with that by FEM in Figure 3(a).

(a) FEM result (b) KIFMM result

Figure 3: Temperature contours computed by FEM and KIFMM BEM.

6 Conclusion

The FMM is one of the most successful fast algorithms for BEM acceleration. But
it requires the analytical expansion of the kernel function, which makes it difficult
to be applied to some complicated problems. Recently, various kernel-independent
FMMs were developed to overcome this drawback. Among them the KIFMM
proposed in [6] has high efficiency and accuracy, and thus has been extensively
used [16–18]. The time consuming M2L translations are accelerated by using
the FFT. However, it is noticed that when more equivalent and check points are
sampled to get higher accuracy, the efficiency of the FFT approach tends to be
lower because more auxiliary volume grid points have to be added in order to do
FFT.

In this paper, the low rank property of the translating matrices in KIFMM is
sufficiently exploited by SVD (called SVD approach in this paper) to accelerate
all the translations, including the most time-consuming M2L. It consists of two
steps. First all the translation matrices are compressed into more compact form,
then the compressed M2L matrices are approximated by low rank approximations.
Finally, the above improved KIFMM is applied to accelerate BEM, leading to a
highly efficient KIFMM BEM for solving large-scale problems.

The accuracy and efficiency of the SVD approach and the KIFMM BEM are
demonstrated by numerical examples. It is shown that, when compared with the
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FFT-accelerated KIFMM, the SVD approach can reduce about 40% of the iterating
time and 25% of the total memory requirement. The presented KIFMM BEM is
of O(N) complexity. By using this method Laplace problem with nearly 5 million
unknowns can be successfully solved within 5 hours on a Xeon-5440 2.83 GHz
CPU and 28 GB RAM.
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