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Abstract 

This study makes the first attempt to apply the singular boundary method (SBM), 
a meshless boundary collocation method, for the analysis of two-dimensional 
(2D) thin structural problems. The troublesome near-singular kernels, which are 
crucial in the applications of SBM to thin shapes, are dealt with efficiently by 
using a non-linear transformation technique. Promising SBM results with only a 
small number of elements are obtained for thin films and coatings with the 
thickness-to-length ratio is as small as 1E-9, which is sufficient for modeling 
most thin structures as used in smart materials and micro-electro-mechanical 
systems. The advantages, disadvantages and potential applications of the 
proposed method, as compared with the finite element (FEM) and boundary 
element (BEM) methods, are also discussed. 
Keywords: singular boundary method, meshless boundary collocation method, 
fundamental solutions, non-linear coordinate transformation, thin-walled 
structures. 

1 Introduction 

The study of boundary value problems for thin-walled structures has received 
considerable attention in recent years. This interest is partly related to the 
extensive use of smart materials and micro-electro-mechanical systems (MEMS) 
in various engineering applications. Analysis of this kind of problem is, 
however, very difficult because the structures are usually made in the forms of 
ultra-thin films with the thickness-to-length ratios in the micro (1E-6) or nano 
(1E-9) scales. 
     The FEM has long been a dominant numerical technique in the simulation of 
many industrial problems. However, the aspect ratio issues associated with the 
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FEM when applied to thin structures limit its application. To maintain element 
aspect ratio, a large number of elements must be discretized, and the procedure 
therefore requires much preprocessing and CPU time as the thickness decreases. 
As an alternative approach, the BEM has long been believed to avoid such 
drawbacks due to the boundary-only discretizations and its semi-analytical 
nature. It has been shown in [1, 2] that the BEM can deal with thin structures 
efficiently as long as the near-singular integrals existing in the BEM 
formulations are handled correctly. In the past two decades, numerous research 
works have been published on this subject in the BEM literature. However, most 
of these earlier methods are either inefficient or cannot provide accurate results 
when the ratio of the thickness is smaller than 1E-6. 
     The singular boundary method (SBM) belongs to the family of meshless 
boundary collocation method [3–6] and can be viewed as one kind of modified 
method of fundamentals (MFS). This method fully inherits the merits of the MFS 
being truly meshless, integration-free, easy-to-program and in the meantime 
overcoming the bottleneck fictitious boundary issue associated with the 
traditional MFS. Prior to this study, this method has since been successfully 
applied to a variety of physical problems, such as two- and three-dimensional 
potential problems [7, 8], infinite domain problems [9], and elasticity problems 
[10]. 
     This paper is an extension of our previous work [11] where a non-linear 
transformation was proposed and applied to treat boundary layered effect 
occurring in 2D potential problems. Herein, the developed algorithm is extended 
to the numerical analysis of 2D thin structural problems. For the text problems 
studied, very promising results are obtained when the thickness to length ratio is 
in the orders of 1E-1 to 1E-9, which is sufficient for modeling most thin 
structures in nano-scales. A brief outline of the rest of this paper is as follows. 
The SBM formulation and its implementation are presented in Section 2. Section 
3 introduces a nonlinear transformation, based on sinh function, to remove or 
damp out the near singular properties of fundamental solutions. Followed in 
Section 4, the accuracy and efficiency of the proposed method are tested to two 
benchmark 2D thin structural problems, in which the proposed method is 
compared with the FEM and BEM. Finally, the conclusions and remarks are 
provided in Section 5.  

2 The SBM formulation for 2D potential problems 

Without a loss of generality, we introduce the SBM formulation with Laplace 
equation governing potential problems as follows: 

 2 ( ) 0,u  x x , (1) 

subject to the following boundary conditions 
 D( ) ( ), ( boundary condition)u u Dirichlet x x x , (2) 

 N( ) ( ) ( ), ( boundary condition)
u

q q Neumann


  


x x x x
n

, (3) 
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where u  is the potential field, D  and N  construct the whole boundary of the 

domain  , n  denotes the outward normal, and the barred quantities indicate the 
given values on the boundary. 
     The MFS approximates the solution ( )u x  and ( )q x  by a linear combination 

of fundamental solutions with respect to different source points js : 

 
1

( ) ( , )
N

j

j

u A


i i jx x s , (4) 

 
1

( ) ( , )
( )

N
j

j

u A
q 



 
 

 
i i

i i j
i

x x

x x s
x

n n
, (5) 

where ix  is the i th collocation point and js  is the j th source point placed on a 

fictitious boundary outside  , j  denotes the j th unknown coefficient of the 

distributed source at js , N  represents the numbers of source points, and 

 
2

1
( , ) ln

2
A


 i j i jx s x - s ,  (6) 

is the fundamental solution associated with 2D Laplace equation. 
     Similar to the MFS, the SBM also uses the fundamental solution as the basis 
kernel function of its approximation. In stark contrast to the MFS, the collocation 
and source points of the SBM are coincident and are placed on the real boundary 
without using a fictitious boundary. The basic idea of this method is to introduce 
a concept of the origin intensity factors to isolate the singularity of the 
fundamental solutions, so that the source points can be placed on the real 
boundary directly. With this idea in mind we represent the SBM interpolation as 

 
1,

( ) ( , )
N

j i
ii

j i j

u A u 
 

 i i jx x s ,  (7) 
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( , )
( )

N
j i

ii
j i j

A
q q 

 


 


i

i j
i

x

x s
x

n
. (8) 

where iiu  and iiq  are defined as the origin intensity factors, i.e., the diagonal 

elements of the SBM interpolation matrix. Observe that for x s , iiu  and iiq  

are singular. In the SBM method, the weakly singular kernels are determined by 
the integration of the fundamental solution on line segments, and the use of the 
desingularization of subtracting and adding-back technique for the calculation of 
diagonal coefficients from the derivatives of the fundamental solutions. The 
main results for 2D potential problems are summarized hereafter. First, the origin 
intensity factors on Dirichlet boundary conditions are given by 

 
2

1 1 1 2
( , ) ln (ln 1)

2 2ii
i i i

u A d d
l l l  

       
s s

i i
s sx s x - s , (9) 

where jl  denotes the half distance between the source nodes -1js  and 1j+s . 

Boundary Elements and Other Mesh Reduction Methods XXXVI  235

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press



     The final results for Neumann boundary equations, after some analytical 
manipulation, is 

 
1, 1,

( , ) ( , )
( )= ,

iN N
j

j
j i j j i ji

A A
q l

l


   

 


  
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i j i j
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x s

x s x s
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where, 

 
1,

1 ( , )N

ii j
j i ji

A
q l

l  


 


j

i j

s

x s

n
. (11) 

We refer readers to Refs. [11, 12] for detailed derivations of the above eqns (9) 
and (11). 
     Using the procedures described above, the origin intensity factors on both the 
Neumann and Dirichlet boundary equations have been extracted out. Once all the 
boundary unknowns are solved, the potential and its derivative at any point 
inside the domain can be evaluated using the following equations 

 
1

( ) ( , )
N

j

j

u A


 jy y x , (12) 

 
1

( ) ( , )
N

j

j

u A


   j
y yy y x ,  (13) 

where jx , y  is a field point located inside the domain, and  y  stands for 

the partial derivatives with respect to y . Employing indicial notation for the 

coordinates of point y , i.e. 1y , 2y ,  y  can be written as 1/ y   or 2/ y  . 

3 Treatment of nearly singular terms 

When the calculation point y  is far away from the boundary, a straightforward 

application of the SBM-expansion (eqns (12) and (13)) suffices to obtain 
accurate numerical results. However, when the calculation point is close to, but 
not on, the boundary, the kernel functions will present various orders of near 
singularities. In such cases, the kernels remains finite at all points. However, 
instead of remaining flat, the kernels develop a sharp peak as the collocation 
point moves closer to the boundary, thus rendering accurate evaluation of the 
kernels difficult. This is very similar to the so-called boundary layer effect 
associated with the BEM-based methods. 
     The near-singular kernels occur always in two situations: first one is known 
as boundary layer effect problems when the physical quantities at the interior 
points very close to boundary are calculated. The other one is named as thin 
structural problems when the thickness of the considered domain is small. In our 
previous work [11], a non-linear transformation for evaluating near-singular 
kernels was proposed and the troublesome boundary layer effect related to SBM 
has been successfully remedied. Based on the method developed in [11], the 
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SBM formulation and computer code for thin structural problems are developed 
in this paper. 
     For a thin structure, some boundary nodes on one side of the surface will be 
very close to the nodes on the opposite side, as shown in Figure 1. Thus, the 
distance r  between some boundary nodes will approach zero. This gives rise to 
near-singular kernels in boundary equations (7) and (8), which are to be 
regularized together with usual singular kernels. Moreover, almost all the interior 
points of a thin structure are very close to the boundary, leading equations (12) 
and (13) nearly singular. Therefore, in order to apply the SBM to thin structural 
problems, one has to deal with near-singular kernels arising in both equations (7) 
and (8) for boundary unknowns and equations (12) and (13) for interior 
 

 

Figure 1: Sketch of a 2D thin structure in which points ox  and x  represent 
boundary points on the adjoining boundaries.  

 

Figure 2: Near-boundary point y . 
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quantities, different to the boundary layer effect where only equations (12) and 
(13) need to be considered. 
     As shown in Figure 2, we suppose the field point y  is very close to a portion 

of the boundary containing the point kx , then we can rewrite eqns (12) and (13) 
as 

 
1,

( ) ( , )
N

j k
k

j j k

u A u 
 

  jy y x , (14) 

 
1,

( ) ( , )
N

j k
k

j j k

u A q 
 

    j
y yy y x , (15) 

where ku  and kq  are defined as the nearly singular factors which should be 

regularized by using some special treatment. 

     In this study, the nearly singular factors ku  and kq  are directly calculated as 

an average value of the fundamental solution over a portion of boundary. This 
can be formed as 

 
1 1

( , ) ( ), ( , ) ( )
k k

k k k k
k k

u A d q A d
l l 

      yy x x y x x , (16) 

where kl  is half distance between the source nodes k -x 1  and k+x 1 , see Figure 2. 

     The above integral eqn (16) are numerically calculated by approximating the 
geometry segment ( )k x  using interpolation polynomials and transforming 

the integrals so that they are mapped onto the interval [-1, 1] in terms of some 
intrinsic coordinate  . If quadratic boundary element is employed, the distance 

r  between the field point and the element becomes [13] 

 2 2( ) ( )r g b     , (17) 

where [ 1,1]   represents the position of the projection of the field point onto 

the element (see Figure 2), b  denotes the shortest distance from the field point 
to the boundary, ( ) 0g    is a low-order polynomial. We refer interested 

readers to Ref. [13] for further details. Using the procedure described above, we 
can rewrite eqn (16) as follows 

 
1 2 2

1

1
( ) ln ( ) ( )

4k
k

u J g b d
l

    
 

      , (18) 

 
1

2 21

1 ( ) ( )

2 ( ) ( )k
k

f J
q d

l g b

  
   

 
  , (19) 

where ( )J   represents the Jacobian of the transformation, ( )f   is a low-order 

polynomial which arises from taking the derivative of the boundary element 
kernel. It is obvious that the above integrals would present various orders of near 
singularity if b  is very small. To achieve high accuracy, the key procedure is to 
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find an algorithm to accurately calculate these nearly singular integrals for a 
small value of b . 
     As mentioned above, the nearly singular integrals under consideration contain 

an argument of the form 2 2( ) ( )g b    . For evaluating an integral of this 

type, Gu        [11] suggest a  change of  integration  variable  using a sinh 
function [14] 
 1 2sinh( )b k t k    , (20) 

where 1k  and 2k  are chosen such that the transformation maps [-1, 1] onto  

[-1, 1] so that the Gaussian quadrature can be applied in a straightforward 
fashion to the transformed integral. The Jacobian of transformation (20) is given 
by 

 
1 1 2cosh( )

d
bk k t k

dt


  . (21) 

Substituting the transformation (20) into the integrals (18) and (19) yields 

  1 2 21
1 2 1 21

( ) cosh( ) ln sinh ( ) ( ) 1
4k

k

bk
u J t k t k b k t k g t dt

l 
       , (22) 

 
1

1 1 2
21

1 2

( ) ( ) cosh( )

2 sinh ( ) ( ) 1k
k

k f t J t k t k
q dt

l b k t k g t 


 

  , (23) 

     In the above eqns (22) and (23), the function 2
1 2sinh ( ) ( ) 1k t k g t   is 

always greater than 1 since ( )g t  is a non-negative function as mentioned above. 

Thus, the integrands are fully regularized and can now be computed 
straightforward via the standard Gaussian quadrature, even if the value of b , 
distance between boundary source and inner collocation points, is very small. 
     It should be noted that the nearly singular kernels are calculated by 
integrating the fundamental solutions over the analyzed surface. However, such 
numerical integrations only increase negligible computing costs compared with 
the total costs since the integration is only used for nearly singular kernels. In 
fact, we calculate all SBM interpolation matrix elements directly in the strong-
form fashion as in the MFS. We only calculate these nearly singular terms by 
using numerical integration, and therefore, the developed SBM for thin structural 
problems remains a strong form approach. 

4 Numerical results and discussions 

We consider the heat diffusion in a thin structure with amoeba-like shapes, as 
shown in Figure 3. In this example, the distance (b ) between the outer and inner 
boundaries is defined as the thickness-to-length ratio which varies in the range of 

1 1010 10b   . The specified boundary conditions are temperatures on outer 
boundary and normal fluxes on the rest of the boundary. The exact solution is 
available as 

 2 2
1 2 1 2 1 2( ) sin coshu x x x x x x   x . (24) 
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Figure 3: A thin structure with amoeba-like shapes. 

 

Figure 4: Temperature results and numbers of nodes required for different 
thickness-to-length ratio (Note that the smallest thickness solved is: 

1010b   for SBM and 410b   for FEM). 
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point A , and also the number of nodes needed to achieve solution for both SBM 
and FEM. We see that even for thickness-to-length ratio b  reaches 1E-9, the 
SBM results are still very good, almost reproducing the exact values. Again, the 
number of SBM nodes does not change across the entire range of thickness-to-
length ratio. The solution time and memory requirements are therefore quite 
modest for the SBM procedure. The FEM solution, however, demonstrates a 
very different behavior. While the cases with 0.1b   are easily solved with the 
FEM, with a fairly small number of elements, the solution requires significantly 
more effort when the value of b  less than 0.1. Indeed, for 410b  , the FEM 
solution becomes infeasible due to memory limitations. Generally speaking, as 
has already illustrated in Refs. [15–18] or other studies in FEM or BEM 
literature, the number of FEM elements increases rapidly for thin structures due 
to aspect ratio limitations, and consequently, the FEM eventually becomes 
infeasible due to memory constraints. On the other hand, the proposed SBM does 
not require a refined mesh and can continue to provide accurate results for 

1010b   without any difficulty. Similar results have also been obtained for the 
flux results, as illustrated in Table 1. Hence we can conclude that, in comparison 
with existing methods for solving thin structural problems, the SBM could be 
considered a competitive alternative. 

Table 1:  Results of fluxes 1/u x   at the point A  using SBM and BEM. 

b  Exact Untransformed SBM Transformed SBM 
BEM 

Ref. [13] 
1E-1 4.6054 5.8743 4.6145 4.6214 
1E-2 4.5327 × 4.5369 4.5769 
1E-3 4.5256 × 4.5259 4.5821 
1E-4 4.5249 × 4.5247 4.5953 
1E-5 4.5248 × 4.5246 4.5997 
1E-6 4.5248 × 4.5246 4.6001 
1E-7 4.5248 × 4.5245 4.6012 
1E-8 4.5248 × 4.5246 4.6098 
1E-9 4.5248 × 4.5249 4.6114 
1E-10 4.5248 × 4.5246 4.6953 

5 Conclusions and remarks 

This paper investigates the applicability of the SBM for the analysis of 2D thin 
structures in micro- and nano-scales. It is shown that the SBM, with proper 
treatment of near-singular kernels, is very accurate and efficient in modeling 2D 
thin structural problems. For all the test problems studied, the SBM provides a 
computationally-efficient solution for both temperature and flux fields, and in 
general, outperforms the BEM and FEM in terms of overall accuracy and 
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efficiency. Compared with BEM and FEM, the developed SBM has the 
following attractive features: 
     (i) Using only boundary discretization instead of domain discretization, the 
SBM does not suffer from thickness or aspect ratio issues associated with FEM-
based methods. Therefore, the number of SBM nodes can be held constant as 
described in example, without any loss in solution accuracy as the thickness 
decreases. 
     (ii) All SBM interpolation matrix elements are directly calculated in the 
strong-form fashion and only near-singular terms are determined by numerical 
integration. Therefore, the develop method remains a strong form approach and 
is computationally far more efficient, easier-to-program and mathematically 
simpler as compared with the BEM. 
     All these features of the SBM approach make it very attractive to the 
modeling and analysis of thin structural problems. Applications of the proposed 
method to thin structural problems can be found in many areas such as thin-
layered coating systems, turbine blades, rudders and various containers, where 
other computational modes, such as the FEM, become inefficient or fail. Some 
work along this line is already underway and will be reported in a subsequent 
paper. 
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