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Abstract 

Integral equation formulations for 2D inhomogeneous finite/infinite anisotropic 
magnetoelectroelastic media are presented. The present formulations only 
contain the fundamental solutions from the matrix which is taken as a 
homogeneous anisotropic magnetoelectroelastic medium. Functionally graded 
linear magnetoelectroelastic inclusions can be considered in which the 
corresponding fundamental solutions are not needed. In numerical 
implementation, inclusions are discretized into a series of quadratic quadrilateral 
or triangular elements, and cracks are meshed into a series of quadratic 
discontinuous boundary elements. For finite domain, the domain boundaries are 
discretized into a series of quadratic boundary elements. Finally, the present 
integral equation method can be used to investigate the interaction between 
cracks and inclusions in 2D anisotropic magnetoelectroelastic media and to carry 
out the analysis of effective properties of magnetoelectroelastic media. 
Keywords: magnetoelectroelastic media, integral equation formulations, 
inhomogeneities, cracks. 

1 Introduction 

Magnetoelectroelastic composite materials have been receiving more attention in 
modern smart structure applications [1]. The study of inhomogeneous 
magnetoelectroelastic mechanics behavior has important theoretical and 
application values in the fields of electrics, microwave, supersonics, laser, 
infrared and so on [2].  
     Extensive investigations of the properties of magnetoelectroelastic composite 
materials have been carried out by many researchers. Based on the inclusion 
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formulation, Huang and Kuo [3] presented a unified method to determine the 
magnetic, electric, and elastic fields in piezoelectric/piezomagnetic composite 
materials with the ellipsoidal inclusions. Huang et al. [4] obtained the 
magnetoelectroelastic Eshelby tensors for piezomagnetic/piezoelectric composite 
matrix containing an ellipsoidal inclusion. Li [5] studied the average 
magnetoelectroelastic field in multi-inclusions or inhomogeneities embedded in 
an infinite matrix and presented a numerical method to evaluate the 
magnetoelectroelastic Eshelby’s tensors for the general material symmetry and 
ellipsoidal inclusion shape. Liu et al. [6] obtained Green’s functions for 
anisotropic magnetoelectroelastic solids containing an elliptical cavity or a crack. 
Pan and his co-workers presented three dimensional Green’s functions in 
anisotropic magnetoelectroelastic bimaterials [7] and exact solution for 2D 
polygonal inclusion problem in anisotropic magnetoelectroelastic full-, half-, and 
bimaterial-planes [8]. Hou and Leung [9] obtained the exact closed-solutions of 
the coupled field of a spheroidal magnetoelectroelastic inclusion embedded in an 
infinite magnetoelectroelastic matrix subjected to remote spatially homogeneous 
mechanical and electromagnetic loadings. Dinzart and Sabar [10] proposed a 
micromechanical model for the estimate of the magnetoelectroelastic behavior of 
the magnetic-piezoelectric composites with coated reinforcements. Shen and 
Hung [11] adopted complex variable and Faber series method to carry out 
magnetoelectroelastic analysis of an arbitrary shape inclusion with eigenfields 
embedded in an infinite domain subject to remote loadings. For more realistic 
cases with irregular geometric shapes and complex loadings, numerical methods 
should be used in the studies of various properties of magnetoelectroelastic 
inhomogeneities. Garcia-Sanchez et al. [1] obtained the solution of circular crack 
in magnetoelectroelastic media by means of the boundary element method. Dong 
et al. [12] carried out the analysis in 2D cracked magnetoelectroelastic media 
using the boundary element method. Pasternak [13] developed a two dimensional 
boundary element method to solve a magnetoelectroelastic medium with doubly 
periodic sets of cracks or thin inclusions. Based on the hypersingular formulation 
of the boundary element method, Rojas-Díaz et al. [14] presented a numerical 
approach to analyze multiple cracks with different crack face boundary 
conditions in 2D magnetoelectroelastic media. 
     In this paper, the integral equation formulations of 2-D inhomogeneous 
finite/infinite magnetoelectroelastic media are presented. The integral 
formulations only contain the extended discontinuous displacements (elastic 
displacement, electrical potential and magnetic potential) over the cracks and the 
extended fundamental solutions from the homogeneous magnetoelectroelastic 
matrix. The inclusions may be functionally graded or other complex 
inhomogeneous materials. The interaction between inclusions and cracks can be 
studied using the present formulations. 

2 Basic formulations 

For an inclusion occupying a domain I enclosed by boundary I  (i.e. the 

interface between the inclusion and matrix) embedded in a magnetoelectroelastic 
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matrix, the stress ij , the electric displacement iD  and the magnetic induction 

iB  are as follows [8] 

 iJ iJKl KlC 
 

(1) 

with 
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(2c) 

where ij  are the strain, jE  are the electric field and jH  are the magnetic field, 

respectively; ijklC  are the elastic moduli, lije  are the piezoelectric constants, lijq  

are the piezomagnetic constants, il  are the electromagnetic constants, il  are 

the dielectric permittivities, and il  are the magnetic permeabilities, 

respectively. In eqn (1), and throughout this paper, the usual index notations are 
adopted with lower case subscripts ranging over (1-3) and capital case subscripts 
ranging over (1-5), respectively. Repeated indices imply summation. 
     Assumed that the extended elastic moduli of the magnetoelectroelastic matrix 

are expressed as M
iJKlC  which are taken as the constants for any points in the 

matrix. Thus, the extended elastic moduli of the inhomogeneous 

magnetoelectroelastic inclusion can be written as M
iJKl iJKl iJKlC C C    in 

which iJKlC  are the difference between the extended elastic moduli from the 

inclusion and matrix. Therefore, eqn (1) can be rewritten as  
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  M
iJ iJKl iJKl KlC C   

 
(3) 

     Based on the principle of virtual work, one has 

 * *

I I
iJKl Kl Ji iJ i JC d n u d  

 
   

 
(4) 

where *
Ju is the virtual displacement component; *

Ji is the corresponding virtual 

strain.  

     Using M
iJKl iJKl iJKlC C C   , eqn (4) can be given as 

 * * *

I I I

M
iJKl Kl Ji iJ i J iJKl Kl JiC d n u d C d    

  
         (5) 

Considering  * * * *
, ,,lK Kl lK K l lK K lK l Ml

u u u       in which the index 

notation following a comma signifies differentiation with respect to spatial 
coordinates, eqn (5) becomes 

 

* * * *
,

I I I I
lK l K lK l K iJ i J iJKl Kl Jin u d u d n u d C d    

   
          (6) 

     Following Brebbia and Dominguez [15], the fundamental solution can be 
obtained for an extended point load   0P   along the direction of the unit 

vector 0Ke   using the following equation 

  *
, 0lK l KP e     (7) 

     The fundamental solutions can be written as 
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(8) 

where * *,IJ IJU T  are J components of the extended displacements and tractions 

due to an extended unit point load in the I direction. The expressions of the 

fundamental solutions * *,IJ IJU T  and *
,IJ iU can be found in the reference [1]. The 

second integral of the left hand side in eqn (6) for a particular direction Ke  of 

the extended unit load can be given as 
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where  Iu P is the I-th component of the extended displacements at the source 

point P with coordinates     1 2,x P x P .  

     Substituting eqns (8) and (9) into eqn (6), one can obtain 
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where q with coordinates     1 2,x q x q and Q with coordinates 

    1 2,x Q x Q denote the field points over the interface I and domain I , 

respectively. 
     Considering that the source point P is in the matrix, the above equation 
becomes 
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     For the matrix, one has the following equation 
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where  is the outer boundary of the matrix.  
     Along the interface I , the extended displacements from the inclusion side 

and matrix side must be equal. Besides, the extended tractions along the interface 
remain the equilibrium. Thus, one can obtain by adding eqns (11) and (12) 

             

       

* *

*
,

, ,

,
I

I IJ J IJ J

iJKl Kl IJ i

u P U P q t q d q T P q u q d q

C Q Q U P Q d Q
 



    

 

 


         (13) 

     The above equation contains domain integrals over the whole inclusion which 
need to be discretized. If the fundamental solutions for the inclusions are 
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available, the subdomain boundary element method can be used to solve these 
magnetoelectroelastic inhomogeneities.  
     When P approaches the boundary  , eqn (13) becomes  
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(14) 

where 
IJC are the free terms depending upon the local geometry at the source 

point P. 
     To find the solution of the above equation, the integral representation for the 
extended strain tensor is also needed. Assume that the source point P lies inside 
the inclusion and let 

e  enclosed by the boundary e denote a portion of I
containing P as an interior point. Since 
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So we can obtain the following equation 
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(17) 

     The above integral equation may be safely differentiated with respect to the l
coordinate of the source point P since this operation gives rise to convergent 
integrals only [16]. One obtains 
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(18) 

     Therefore, the extended strain tensor can be obtained 
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where 
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In eqn (20),  *

,IJ j
U and *

,IJ j
T   can be found in reference [1]. *

,IJ m j
U  has the 

following expression 
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where A , H and M may be calculated by the method [17], and  

        1 2 1 2,q P
M M M Mz x q x q z x P x P      (20e) 

     After discretizing eqns (14) and (19) using quadratic approximation for the 
generalized displacements, tractions along the matrix boundary and the 
generalized shear strains in inclusion, and all the unknowns are taken to the left 
hand side, the system of equations can be obtained 

 AX F  (21) 

where A is the matrix of coefficients; X is the vector of boundary unknowns and 
the extended strains in the inclusion; F is the known vector calculated by the 
product of the known boundary conditions and the corresponding matrix 
coefficients. 
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     After the unknowns are obtained using eqn (21), the extended stresses at 
points in the inclusion can be easily computed by eqn (1). For the points in the 
matrix, the corresponding extended stresses can be calculated by the following 
equation 

 
M

iJ iJK l KlC 
 

(22) 

where Kl  is calculated by  
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Note that for infinite domain, eqn (19) can be simplified as 
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where 0
K l are the extended strain components by the remote extended loading.  

     For the more complicated inclusion-crack medium, the above related 
equations can be expanded to study the interaction between the inclusions and 
cracks, i.e. for point on the matrix outer boundary 
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where the extended discontinuous displacements Ju over the crack c are as 

follows 
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where the superscripts + and - stand for the upper and lower crack surfaces, 

respectively. iu ,   and   are respectively the elastic displacement, the electric 
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potential and the magnetic potential. Note that 0J Jt t   has been assumed in 

the derivation of eqn (25). 
     For point in the inclusion, one has 
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(27) 

For point over the crack, one has 
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where the third integral in the right hand side of eqn (28) contains the 
hypersingular integral which can be calculated by the existing method  [1].  
     Eqns (25), (27) and (28) can be used to investigate the interaction between the 
inclusions and cracks. For infinite domain, only the simplified eqns (27) and (28) 
need to be adopted to study inhomogeneous media, i.e. 
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where 0
iJ are the extended stress components by the remote extended loading. 

     Once the extended discontinuous displacement components over crack are 
obtained, the extended stress intensity factors can be easily calculated by using 
the existing formulations [1]. 
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3 Numerical example 

A circular inclusion and a horizontal crack along x axis are embedded into an 
infinite magneto-electro-elastic matrix under a uniform far-field stress or an 
electric displacement or a magnetic induction (see Figure 1). The material 
parameters from the matrix and inclusion are given as shown in Tables 1 and 3 
(see [12]), respectively.  The inclusion with radius a=1m is meshed into 8 
quadratic quadrilateral elements and 8 quadratic triangular elements.  The crack 
surface is discretized into 20 discontinuous quadratic elements. Under the 
uniform remote stress or the electric displacement or the magnetic induction, the 
stress yy , electric displacement yD and magnetic induction yB within the 

inclusion, the normal discontinuous displacement nu , the discontinuous electric 

potential   and the discontinuous magnetic potential   over the crack are 

respectively shown in Figures 2–7. Interaction between the inclusion and crack 
can be easily observed. 
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Figure 1: A circular inclusion and a straight crack. 
 

 

Figure 2: Stress yy along x-axis 

in inclusion under 
remote stress 0

yy . 

 
 

Figure 3: Electric displacement 

yD along x-axis in 

inclusion under remote 
electric displacement 

0
yD .  
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Figure 4: Magnetic induction yB

along x-axis in 
inclusion under remote 
magnetic induction 0

yB .  

 

Figure 5: Normal discontinuous 
displacement nu along 

crack under remote 
stress 0

yy .  

 

Figure 6: Discontinuous electric 
potential   along 

crack under remote 
Electric displacement 

0
yD . 

 

Figure 7: Discontinuous electric 
potential   along 

crack under remote 
magnetic induction 0

yB .
 

4 Conclusions 

Integral equation formulations for 2D inhomogeneous finite/infinite 
magnetoelectroelastic media have been presented. The present formulations can 
be used to investigate the interaction between the inclusions and cracks, and can 
be also used to carry out the analysis of effective properties of 
magnetoelectroelastic media. The inclusions may be exponentially (but not 
limited to) functionally graded magnetoelectroelastic material. The present 
formulations only need the fundamental solutions from the homogeneous 
anisotropic magnetoelectroelastic matrix which are available in the literature.  
More examples will be reported later. 
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