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Abstract 

This paper focuses on numerical comparison on the singular boundary method 
(SBM) and the method of fundamental solutions (MFS) for water wave 
problems. These two methods are strong-form meshless boundary collocation 
methods. These methods are applicable in various problems when the 
fundamental solution of the governing differential equation is known. To avoid 
the singularities at origin, the SBM introduces the concept of source intensity 
factor and circumvents the troublesome placement of the fictitious boundary in 
the MFS. Numerical results show the efficiency, stability and convergence of the 
SBM and the MFS through some benchmark examples under two-dimensional 
semi-infinite harbor problems. 
Keywords: singular boundary method, method of fundamental solutions, strong 
form, harbor wave, collocation method. 

1 Introduction 

A harbor is partially enclosed basin of water connected through one or more 
opening to the sea. It is a sheltered environment for the mooring of ships and 
vessels. It is important to understand the interaction between the boundary of 
harbor and water wave. The scattering of water waves is one of major interesting 
problems to engineers [1, 2]. The direct problem of water wave scattering by 
semi-circular boundary of harbor is our main concern in this paper. Based on 
assumptions of potential flow and linear wave theory, the problem of water wave 
scattering can be formulated to 2D Helmholtz equation. 
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     The method of fundamental solutions (MFS) is a meshless technique for the 
numerical solution of the problems that is approximated by a linear combination 
of fundamental solution in terms of sources (singularities) which are placed 
inside the domain of the problem according to Fairweather and Karageorghis [3]. 
The unknown coefficients of the fundamental solutions are found by forcing the 
approximation to satisfy the boundary condition according to Karageorghis [4]. 
The MFS has been used by Fairweather, Karageorghis and Martin for treating 
the scattering and radiation problems [5]. 
     The singular boundary method (SBM) is a novel meshless boundary methods 
proposed by Chen and Fu [7]. The new numerical method does not require a 
fictitious boundary to solve problems. The source points can be placed directly 
on physical boundary. Unlike the MFS, this method uses Inverse Interpolation 
technique (IIT) to circumvent the singularity of the fundamental solutions at the 
origin. The method has been applied successfully to interior and exterior Laplace 
[6–9], elastostatic [10] and Helmholtz [11, 12] problems, which can achieved the 
accurate and stable numerical results. 

2 Governing equation and numerical method formulation 

2.1 Governing equation 

Assuming that the water sea bodies are incompressible and non-viscous fluid and 
the rotational motion is negligible. The governing equation of the water wave is 
given by 

 
   2 , , , 0, , ,x y z t x y z   

 
(1) 

where  ,  and  , ,x y z  denote the Laplace operator, the domain of interest 

and the velocity potential, respectively. The boundary conditions are 

- Bottom boundary condition 

 
 0, ,n z H x y    

  
(2) 

- Kinematic free-surface boundary condition
 

 
 0, , ,z t x x y y z x y t         

 
(3)

 
- Dynamic free-surface boundary condition 

 
     2 2 21 2 , , ,

x y zt gz B t z x y t        
 

(4)
 

Using the method of separation variable, we have 

       , , , , i tx y z t e u x y f z e     (5) 

where      cosh coshf z igA k z H kH      , in which ,g  ,A  ,k  ,  and 

H are the acceleration of the gravity, the amplitude of incident wave, the wave 
number, the wave frequency and the water height, respectively. Substituting 
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Eq. (5) into Eq. (1) and using the boundary conditions, we have the Helmholtz 
equation for water wave: 
 

      2 2 , 0, ,k u x y x y     (6) 
 

 

Figure 1: Spatial representation of  , ,x y t . 

2.2 The numerical method formulations 

We consider the Helmholtz equation (6) governing potential problems in two 
dimensions in semi-infinite domains .  Subjected to the boundary conditions 
 
 

   , Du x u x    (7) 

 
 

, N

u x
q x

n


 


  (8) 

 
 

where , ,u , ,D ,N and n  are the Laplace operator, potential field, 

unbounded region in 2 , Dirichlet boundary, Neumann boundary and unit. 
 

 

 

Figure 2: Sketch and node distribution for exterior problems: (a) MFS and 
(b) SBM. 
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     The Sommerfeld radiation condition at infinity in 2-D is given by  
 

    
1

2lim =0
j

j j
r

r r ik u x


    (9) 

2.2.1 Method of fundamental solutions (MFS)  
The solution of equations (7)–(9) is approximated by 

    
1

, ,
N

m j m j m
j

u x G x s x


   (10) 

where      1
0, 4m j mjG x s iH kr , the Euclidean distance 

2mj m jr x s   and 

1i   . Where ,mx  ,js  ,j and G  represent the thm  collocation point, thj  

source point, thj  unknown coefficient to be determined,  1
nH  is the nth order 

Hankel function of the first kind. 

2.2.2 Singular boundary method (SBM) 
The singular boundary method formula is presented as 

  
 

 
1

1, #

, , \

, ,

N

j m j m D
j

m N

j m j m mm m D
j m j

G x s x

u x

G x s G x



 






 

 
  





 (11a) 

 
 

 

 
1

1, #

,
, \

,
,

N
m j

j m N
xjm

Nx m j
j m mm m N

xj m j

G x s
x

nu x

n G x s
G x

n



 





 
  
   

 
 






  (11b) 

where ,j ,mmG ,mmG  ,xn  and N represent the thj  unknown coefficient to be 

determined by the imposing the boundary condition, and the source intensity 
factors, the outward normal unit on the collocation points ,mx and the number of 

source points sj, respectively. The source intensity factors are determined by the 
Inverse Interpolation Technique (IIT).  

2.2.3 Inverse interpolation technique (IIT)  
This section introduces a simple numerical technique, called inverse 
interpolation technique (IIT) [6, 7], to calculate the source intensity factors for 
Laplace equation. Then, we use the relation between the Laplace and 
Helmholtz fundamental solutions to determine the source intensity factors for 
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Helmholtz equation [13]. By using the interpolation formula (11), the influence 

coefficients j  and ,j are given by the following relation: 

       0 ,k j j I kG y s u y    (12a) 

 
      0 ,k j

j I k
x

G y s
u y

n


    
  

 (12b) 

     Replacing the sample points ky  with the boundary collocation points mx , the 

source intensity factors for Laplace equation can be calculated by: 

    0 0
1, #

, , ,
m j

N

m I m j m j j m j m D
j x s

G u x G x s x s x 


 
    
 
 


 (13a) 

 
   0

0
1, #

,
, ,

m j

N
m jI m

m j j m j m N
j x s

G x su x
G x s x

n n
 



     
  
 

  

 (13b) 
     The source intensity factors for Helmholtz problem can be written as 

   0 1 2 ln 2 2 , ,mm m m j m DG G k i x s x         (14a) 

 0 , ,mm m m j m DG G x s x     (14b) 

3 Numerical results 

The efficiency, accuracy, stability and convergence are tested by calculating the 
relative error (Rerr): 

 

      2

1

Rerr
NT

i

u i u i u i NT


 
 

(15)

 
where u  and u are the numerical solution and the exact solution of the total 
field. Here the number of the tested points NT is 808, which uniformly 
distributed inside the semi-cirque with inner radius 1 and outer radius 8. 
 
     Example 1: Scattering of water wave problems in the harbor. The problem is 
semi-infinite. 

     We consider incident wave  = ,ikx
iu x e and reflected wave  = ikx

ru x e  

scattered by soft and hard semi-circular as showing in Fig. 2. The total field of 
scattering is ,s i ru u u u   which satisfies the Helmholtz equation (6). The 

boundary conditions are given by 
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- Rigid boundary 

 

     
0,s i ru x u x u x

x
n n n

  
   

  
     (16)

 
- Soft boundary 

     + + =0,s i ru x u x u x x                      (17) 

     The analytical solution of scattering wave is written as [14]. 

- Scattering wave for hard boundary 

 

 
   
   

   

  
     

       
   

1
10

01
0

1
11

1 1
1 1

, = 2                                        

2 cos( )

s

t ttt
t

t tt

J kp
u r H kr

H kp

kpJ kp tJ kp
i i H kr t

kpH kp tH kp








 



 
  


   

(18)

 

- Scattering wave for soft boundary 

 

 
   
   

   

 
   
   

   

1
10

01
0

1
1

1
1

, = 2                   

2 cos( )

s

t tt
t

t t

J kp
u r H kr

H kp

J kp
i i H kr t

H kp










        

(19) 

where  1 ,tH  1 ,tJ  , ,r  ,k and p represent the t-th order of Hankel function the 

first kind, the nth order of Bessel function the first kind, polar coordinates of the 
domain point, the wave number and the radii of the physical domain, 
respectively.  

 

Figure 3: Sketch of water wave scattering in the harbor. 

     Figure 4 shows the error analysis of the SBM and MFS for 2D scattering of 
water wave by soft (a) and hard (b) semi-circular harbour boundaries. To test the 
stability of MFS, we took two different fictitious radiuses. The fictitious radiuses 
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Figure 4: Numerical results of example for various numbers of nodes: (a) soft 
boundary and (b) rigid boundary. 
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are 0.99 for MFS1 and 0.7 for MFS2. From Figure 4, we can observe that MFS 
is not stable with different fictitious radiuses. Among these results, the MFS2 has 
the most accurate numerical solutions but the MFS1 has the worst numerical 
solutions. While the SBM avoids the controversial fictitious boundary in MFS, 
and provides the stable and accurate results. 

4 Conclusions 

This paper presents the comparison numerical on the singular boundary method 
(SBM) and method of fundamental solutions (MFS) for harbor problems. The 
MFS and SBM are boundary meshless collocation methods. Both of them use the 
fundamental solution of the governing differential equation as basis function to 
avoid singular numerical integrals in the boundary element method. In addition, 
the SBM introduces the source intensity factors to eliminate the singularities of 
fundamental solutions at origin and avoid the fictitious boundary in the MFS. 
Numerical results verify that the SBM is more stable than the MFS. 
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