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Abstract 

In this paper some applications of boundary element method are given to solve 
3D acoustic problems in an exterior domain. The Burton-Miller technique is also 
used to ensure the uniqueness of solutions. In order to improve efficiency, 
Adaptive Cross Approximation is used to deal with both the system matrix and 
the vector, and the GMRES algorithm is adopted as the iteration solver. Three 
examples are presented to illustrate the effectiveness and accuracy of the method. 
Keywords: acoustics problems, Boundary Element Method, Adaptive Cross 
Approximation, GMRES algorithm. 

1 Introduction 

Acoustics problem is very important in many fields, such as automotive industry, 
high-speed train transport service, wind-generated systems, navigation, 
aerospace engineering and so on [1–2]. In the aerospace industry, for instance, 
spacecraft structures are subject to heavy acoustic load, particularly during 
launch, which can impose severe and adverse affect to the structures of the 
spacecraft and their payloads. The importance of the launcher vibroacoustic 
environment is increasing with respect to satellite loads due to the increase in 
size and decrease in surface mass of lightweight appendages like antennas and 
solar arrays. In this framework, the effect of acoustic loads to structures will be 
even more important in the course of the next decades with the introduction of 
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new light-weight materials such as composites [3]. Several techniques have been 
developed [4–6], but the most conventional and efficient methods for 
engineering analyses are the Finite Element Method (FEM) and the Boundary 
Element Method (BEM). 
     The FEM is the preferred tool for the simulation of structural vibrations [7]. It 
can also be employed for the acoustic part; however, comparing with the BEM, 
the latter reduce by one the mathematical dimension of problems to be solved, 
from 3D to 2D, or from 2D to 1D, leading to much easier mesh generation. The 
second advantage is the accuracy the BEM offers, due to the nature of integrals 
used in the formulations. The third advantage of the BEM is its capability of 
automatic satisfaction of the Sommerfeld radiation condition [8] without 
introducing additional, often cumbersome, conditions at infinity. 
     On the contrary, boundary element matrices are non-symmetric and fully 
populated. Typically direct solvers require O(N3) operations while iterative 
solvers O(kN2), where k is the number of iterations. The above drawbacks reduce 
the efficiency of the BEM. In this regard, the Adaptive Cross Approximation 
(ACA) [9, 10] algorithm is used to reduce the memory storage requirements and 
the CPU solution time. When come to iteration, the Generalized Minimal 
Residual Method (GMRES) iterative solver is adopted [11, 12]. 
     The paper is organized as follows. After a short introduction to the subject, 
the Boundary Element Method for the Helmholtz equation is given. In Section 3, 
the adaptive cross approximation method and GMRES are covered. Numerical 
examples are given in Section 4. The last parts are conclusions and 
acknowledgements. 

2 The boundary elements method for the Helmholtz equation 

2.1 Helmholtz equation 

We consider the linear time-harmonic acoustic wave problems in an exterior 
domain E, outside a structure with boundary S. Acoustic problems in frequency 
domain can be described by the Helmholtz equation, in three dimensions, which 
is written as 
    2 2 0p x k p x    (1) 

where 2  is the Laplace operator,  p x  is the sound pressure at point x  in the 

fluid, /k c  is the acoustic wavenumber and c is the speed of sound in the 
fluid. Additionally the Sommerfeld radiation condition [8] in three dimensions 
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has to be satisfied for this exterior problem, which ensures that wave is purely 
outgoing.  
     A 3D fundamental solution for the Helmholtz equation is given by 
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where x  is a field point, y  is a source point and r x y   is the distance 

between x  and y . The key idea is to use Green’s second identity in 

combination with the property of the Dirac distribution. 
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     By this way, the pressure p  at an arbitrary point x  within the exterior 

acoustic domain E is given by the integral representation 
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(6) 

     For scattering problems formulation (6) can be written 

           
*

* I E,
, d d ,

S S
y

G x y
p x G x y q y S p y S p x x

n


   

          (7) 

     Let the point x  approach the boundary. We obtain the following conventional 
boundary integral equation (CBIE) [13]: 

     *
* d

S

p G
C x p x G p S

n n

        (8) 

where   0.5C x   if S is smooth around x. This CBIE can be employed to solve 

for the unknown p and q on S. 
     It is well known that the CBIE has a major defect for exterior problems, that 
is, it has non-unique solutions at a set of fictitious eigenfrequencies associated 
with the resonance frequencies of the corresponding interior problems [14]. This 
difficulty is referred to as the fictitious eigenfrequency difficulty. A remedy to 
this problem is to use the normal derivative BIE in conjunction with the CBIE. 
Taking the derivative of integral representation (8) with respect to the normal at 
a point x on S and letting x approach S, we obtain the following hypersingular 
boundary integral equation (HBIE): 
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where  ' 1

2
C x  , if S is smooth around x. This equation, taken by itself, suffers 

from the same kind of defect as equation (8). However, if we use a linear 
combination of CBIE (Eq. (8)) and HBIE (Eq. (9)), the uniqueness can be 
ensured for exterior acoustic wave problems. Thus, we obtain 
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where α is the coupling constant. This formulation is called Burton-Miller 
formulation [15] for acoustic wave problems and has been shown to yield unique 
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solutions at all frequencies, if α is a complex number which, for example, can be 

chosen as 
i


 with i 1   [14]. 

     When the boundary of the acoustic domain is discretized into the boundary 
elements, the resulting system of linear equations can be expressed as 

      H p G v  (11) 

where the matrices  H  and  G  are obtained by integrating the fundamental 

solutions over each boundary element. When there is incident sound, a free term 
is needed and equation (11) becomes 

        I H p G v p  (12) 

3 Solving algorithm of BEM equations 

Because of non-symmetric and fully populate matrices in BEM equations, the 
Adaptive Cross Approximation (ACA) algorithm is used to compress and 
storage matrix entries and to compute matrix-vector multiplication. When it 
comes to iteration, the Generalized Minimal Residual Method (GMRES) 
iterative solver is adopted. In the following, the ACA and GMRES algorithm are 
introduced briefly. The details and more efficient version can be found in 
literature [9, 10, 16]. 

3.1 Adaptive cross approximation 

The Adaptive Cross Approximation algorithm produced by Bebendorf and 
Rjasanow is an effective technique for solving non-symmetric and fully 
populated matrices and decreases the CPU time significantly. The main process 
is as follows. 

1) Index octree 

The low-rank approximation of the matrix of BEM is based on asymptotically 
smooth functions, which happens in a well separated domain. Thus a tree 
structure for all boundary points should be constructed at first. For a 3D domain, 
an octree is necessary to describe the geometry relationship of sections on 
surface. The information that a tree should record includes: its father, its 
children, its geometry information, the points contained and so on. The least 
nodes are called leaves whose number of boundary points contained are less than 
a given threshold value used to judge if a new division is necessary. 

2) Partitioning of matrix 

Based on the tree, the matrix of BE equations can be divided into some blocks. 
At first, the relationship between nodes should be established. For some node NP 
in an octree, its neighbor nodes are defined as the nodes which have the same 
geometry size and one common point at least. The interaction nodes are those 
nodes owing the same geometry size, whose fathers are neighbour nodes, but not 
for them. The relationship is shown as Figure 1 in a two-dimension domain. 
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Figure 1: Relationship between nodes. 

     Then for every node of the tree, the elements contained are taken as source 
points and the elements of its neighbor as field points, and the sub matrix came 
from the source points and field points are defined An. The sub-matrices whose 
entries come from elements of the node and its interaction nodes are defined Af. 
All the sub-matrices An and Af form the whole efficient matrix of the boundary 
element equation. 

3) Low rank approximation 

The low-rank approximation in ACA is defined as 

 1 1

1

r
m n m r r n m n

i i
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     The goal of ACA is to achieve 

 

m n m n m n m n     R A A A

 

(14) 

where ε is the admissible error. 
     The ACA algorithm has been applied to the low rank blocks achieving 
approximately O(N) for both storage and matrix-vector multiplication [17]. It 
must be noted that the full pivoted approach is well known to be much slower 
than partially pivoted approach. The main reason behind this is that fully pivoted 
approach requires the knowledge of the full matrix whereas the partially pivoted 
approach would only require generation of individual matrix entries. 

3.2 Generalized minimal residual method (GMRES) 

The generalized minimal residual method (GMRES) is one of the most popular 
iterative solvers for asymmetrical linear systems proposed by Saad and Schultz 
[18] and further developed by other authors [19–21]. It has the property of 
minimizing at every step the norm of the residual vector over a Krylov subspace. 
The algorithm is derived from the Arnoldi process for constructing an orthogonal 
basis of Krylov subspace. Because of existence of error the gained vectors lose 
orthogonality gradually. Therefore a preconditioner is needed. In our codes the 
solution of diagonal blocks are taken as the initial solution and the maximal 
iteration time is set to 60. 

4 Numerical results 

In this section the numerical results of three different examples of simulations 
are given. The first regards the results of a simple benchmark problem whose 
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analytical solution is well known [22], i.e., a uniform pulsating sphere. The 
second example evaluates the pressure distribution on the surface and in the 
surroundings of a rigid sphere. The third example simulates the pressure 
distribution on the surface and in the surroundings of a satellite suffering 
incident plane wave. In all the examples constant triangular elements are utilized 
to discretize the problems. The maximum number of elements in a leaf is set to 
50. The optimum value of this parameter depends upon the geometry and the 
elements of the mesh. The GMRES solver will stop iterations when the residue is 
below the tolerance 10−8. All the computations were done on a desktop PC with 
an Intel 3.30GHz processor and 4.00G memory. 

4.1 The sound generated by a pulsating sphere 

The problem of the sound radiated by a pulsating sphere with radius 1mr = , 
and uniform radial velocity 1m/snv =  is investigated. The acoustic wave 

velocity and the medium density are set equal to unity. The wavenumber k varies 
from 1 to 20. The total number of elements is 800. This surface vibration will 
generate the centred wave and the analytical solution of this problem is 

   0

i

i 1 n

k
p r Z v

k



 (15) 

where 0 0Z c  is the acoustic impedance. 
 

          

Figure 2: Frequency sweep plot for 
the pulsating sphere model. 

Figure 3: Plane wave 
scattered by 
a rigid sphere. 

 
     The three-dimensional scalar wave propagation problem using constant 
boundary elements is used for comparison purposes. The results from CBEM, 
Burton-Miller method and analytical solution are compared in Figure 2, which 
shows that the conventional BEM fails to predict the pressure on the surface of 
the sphere at the fictitious frequencies. The results from the Burton–Miller 
formulation compare well with the analytical solution at all wave numbers. 
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4.2 Scattering of sound from a rigid sphere 

The second example is the scattering of sound from a rigid sphere of radius 
1mr =  due to an incident plane wave coming from the z+  direction at different 

values of ka. 
     A plane wave of amplitude 0 1p =  propagating in the direction of z+  

direction is scattered by the rigid sphere centered at the origin (0, 0, 0) . The 

sphere in the presence of the plane wave is shown in Figure 3. 
     An incident plane wave of amplitude p0 traveling in z+  direction is given by 

 
i

0
kz

incp p e=  (16) 
     The total sound pressure at any field point is the sum of the incident and 
scattered pressures, 
 total inc scatteredp p p= +  (17) 
     A BEM model consisting of 402 nodes and 800 constant triangular elements 
was used to model the sphere. 
     Figure 4 shows angular distribution of the field point pressure amplitudes at 

1.5r =  computed from both BEM and analytical methods for different values of  
 

       

                                       (a)                                                                (b) 

       

                                       (c)                                                                (d) 

Figure 4: Angular distribution of the field point pressure for different values 
of ka. (a) 0.1ka = , (b) 2ka = , (c) 4ka = , (d) 8ka = . 
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ka . The quantities are plotted versus the polar angle q . πq=  corresponds to 
the front end and 0q=  corresponds to the back end of the sphere with respect to 
the impinging plane wave. The comparisons between the solutions computed 
from BEM and analytical expressions show very good agreement. 

4.3 Scattering of sound from a satellite 

Another example is to simulate the pressure distribution on the surface and in the 
surroundings of a satellite as shown in Figure 5. 
     A spherical wave, whose frequency is 80 Hz and sound velocity is 

344m / secc  , is used to simulate the real vibration experiment. Figure 6 shows 
the pressure distribution on the surface of the satellite and in Figure 7 there is the 
pressure distribution surrounding it. 
 

                  

Figure 5: Surface of a satellite 
meshed with 13380 
triangular elements. 

Figure 6: Sound pressure for 
a satellite. 

 

Figure 7: Sound pressure surrounding a satellite. 

5 Conclusion 

The BEM has successfully predicted the acoustic radiation and scattering in an 
infinite domain and the numerical results agree with the analytical solutions very 
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well. After verifying the accuracy of the formulation and codes, we compare the 
efficiency of conventional BEM with the ACA BEM. The latter enhance 
computing efficiency greatly. Then a complex satellite model suffering a plane 
wave is evaluated, which indicates that it’s a potential method to solve large 
scale acoustic problems with ACA algorithm. 
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