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Abstract

A coupling algorithm based on the finite element method and the wideband fast
multipole boundary element method (FEM/wideband FMBEM) is proposed for the
simulation of fluid-structure interaction and structural acoustic sensitivity analysis
using the direct differentiation method. The iterative solver GMRES is applied
to accelerate the solution of the linear system of equations. The FEM/Wideband
FMBEM algorithm makes it possible to predict the effects of arbitrarily shaped
vibrating structures on the sound field numerically.
Keywords: fluid-structure interaction, FEM, wideband FMBEM, design sensitivity
analysis, direct differentiation method.

1  Introduction

A suitable approach for fluid-structure interaction problems and the associated
predictions is the coupled FEM/BEM [1,2]. But the coupling analysis of structural-
acoustic underwater based on FEM/Conventional BEM (CBEM) algorithm still
represents the bottleneck of large computation cost, because the CBEM produces
a dense and non-symmetrical coefficient matrix which induces O(N3) arithmetic
operations to solve the system of equations directly, such as by using the Gauss
elimination method. The fast multipole method (FMM) [3, 4] allows the matrix-
vector product to be performed to a given precision in O(N) operations and reduces
the storage requirements to O(N) as well, for instance, for potential problems and
low-frequency acoustic wave problems.

Acoustic design sensitivity analysis can provide information on how the
geometry change affects the acoustic performance of the given structure, so it
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is an important step of the acoustic design and optimization processes [5, 6].
But the sensitivity analysis of the structural-acoustic based on FEM/Conventional
BEM algorithm represents the bottleneck in computation efforts. In this paper, the
coupling algorithm FEM/Wideband FMBEM is applied to the structural-acoustic
sensitivity analysis using direct differentiation method.

This work promotes the applications of coupling FEM/Wideband FMBEM in
the fluid-structure interaction problems. The example of scattering from elastic
spherical shell underwater is presented to demonstrate the accuracy and efficiency
of this method.

2  Structural-acoustic analysis

2.1 FEM modeling

It is assumed that a harmonic load with the excitation frequency ω is applied to
the structure, the steady-state response of the structure can be calculated from the
frequency-response analysis. The linear system of equations to compute the nodal
displacements u is derived by

(K+ iωC−ω2M)u(ω) = Au = f, (1)

where i =
√−1, M the mass matrix, K the stiffness matrix, C the damping matrix

and u the nodal displacement vector. Note that the steady-state response has the
same frequency as the applied load but may have a different phase angle due to
the existence of damping. If the applied load is not harmonic, Eq. (1) can still
be applied by decomposing the time-dependent forces into the frequency domain.
Taking into account the effect of the acoustic pressure at the structural surfaces, we
apply an acoustic load Csfp along with the structural load fs, and then the excitation
can be expressed as:

f = fs +Csfp, (2)

where the coupling matrix Csf transforms the degrees of freedom of the fluid to
the structural degrees of freedom, and it can be expressed as:

Csf =

∫
Γint

NT
s nNfdΓint , (3)

where Γint denotes the interaction surface, Ns and Nf are the global interpolation
functions for the structure and fluid domains, respectively, n is the surface normal
vector. By substituting Eq. (2) into Eq. (1), we can obtain the following formula

u = A−1fs +A−1Csfp. (4)
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2.2 BEM modeling

The Helmholtz equation can be reformulated into a boundary integral equation
(BIE) defined on the structure boundary Γ as follows:

c(x)p(x)+
∫

Γ
q∗(x,y)p(y)dΓ(y) =

∫
Γ

p∗(x,y)q(y)dΓ(y)+ pi(x). (5).

If the boundary Γ is divided into N elements (e.g. using piecewise constant
discretization in this study). Then, after collecting the equations for all collocation
points (nodes) located at the centre of each element and expressing them in matrix
forms, one can obtain the following system of linear algebraic equations

Hp = Gq+pi. (6)

2.3 FEM/BEM modeling

The governing equations shown above are linked up via the continuity condition
q =−iωρv across the interaction surface. The normal velocity v can be expressed
as a function of the displacement u, as follows

v = iωS−1Cfsu (7).

By substituting Eq. (7) into Eq. (6), we can obtain the following formulation

Hp = ω2ρGS−1Cfsu+pi. (8)

By substituting Eq. (4) into Eq. (8), one can obtain the following coupled boundary
element equation

Hp−GWCsfp = GWfs+pi. (9)

Fast multipole method(FMM) and the iterative solver GMRES were applied
to accelerate the solution of the coupled boundary element system equation, and it
will need O(N) operations to solve the coupled boundary element system equation.
In this paper we will use a sparse direct solver to solve the symmetric and
frequency-dependent system of linear equation Ax = y.

2.4 Shape design sensitivity analysis for coupled boundary element equation

First, by differentiating the coupled boundary element equation (9) with respect
to the shape design variable, we can obtain the following formulation

H
.
p−GWCsf

.
p =

.
Ga+Gb−

.
Hp+

.
pi, (10)

where vectors a and b are defined by

a = WCsfp+Wfs, (11)
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b =
.

WCsfp+W
.

Csfp+
.

Wfs +W
.
fs, (12)

.
W = ω2ρ(

.
S−1CfsA−1 +S−1 .

CfsA−1 +S−1Cfs

.
A−1). (13)

After obtaining all the unknown boundary acoustic pressure values by solving
Eq. (9) and subsequently substituting all the boundary acoustic pressure into
Eq. (10), we can get the computational solution of the matrix-vector products on
the right hand side of Eq. (10). In fact, the expressions of matrices determining

vector b, such as
.
S−1,

.
Cfs and

.
Csf, can be complicated especially when the

structural domain is approximated using shell finite elements. And so it is very
difficult to solve them directly. But the semi-analytical derivative method can be
applied to conquer the difficulty.

It is worth noting that solving directly the inverse of matrix A in Eq. (13) will
be very expensive and it is very difficult to get the variation of inverse of matrix

A by using directly the finite difference method. But
.
A−1 can be replaced by the

following formulation .
A−1 = A−1 .

AA−1. (14)

By substituting Eq. (14) into Eq. (13), we can obtain efficiently the solution of.
Wy by solving directly Ax = y. In fact, it needs much computing time to solve
directly matrices H, G,

.
H and

.
G in Eq. (10) by using conventional BEM since the

matrices are full and un-symmetric. But, fast multipole method and the iterative
solver GMRES can be applied to accelerate the matrix-vector products.

3 The wideband FMM formulations

In this section, the FMM approach is introduced to accelerate the matrix-vector
product in Eqs. (9) and (10) and the iterative solver GMRES is used to solve the
coupled boundary element equation and its sensitivity equation. It is well-known
that the original FMM is inefficient for high frequency problems, so the diagonal
form (high-frequency method) is introduced to overcome this difficulty. But the
diagonal form has instability problem for the solution of low frequency Helmholtz
equations. The wideband FMM obtained by combining the original FMM and the
diagonal form FMM can overcome the above problems. In the wideband FMM,
we use the following M2F formula to convert the moment of the original FMM to
that of the diagonal FMM [4]:

F(k, k̂,O) =
∞

∑
n=0

n

∑
m=−n

(2n+ 1) i−nY m
n (k̂)Mm

n (k,O). (15)

The local expansion coefficient of the diagonal FMM can also be converted to
that of the original FMM by using the following H2L formula:

Lm
n (k,x

′) =
in

4π

∫
S
Y m

n (k̂)H(k, k̂,x′)dS. (16)
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Actually, the number of terms used in the functions O, I, M and L and the number
of the plane wave samples k̂ along the unit sphere have to be truncated. The number
of truncation terms and the plane wave samples depends on the size d of the cell
and the wave number k. It is given in the following form in [7]:

p = kd+ c · log(kd+π). (17)

where c is a constant. Obviously, a larger c relates to a larger truncation number
p and it normally leads to an improvement of accuracy but induces to a longer
computing time and larger memory usage. Thus, it is a key parameter in the FMM
algorithm, which is chosen as 5 in this paper [6].

3.1 Scattering from an elastic spherical shell

In this example, we consider the acoustic scattering of a plane incident wave with
unit amplitude on an spherical shell with radius a = 5.0m centred at point (0,0,0),
and the plane incident wave is travelling along the positive x axis, as shown in
Fig. 1. For the spherical shell, the thickness is chosen as 0.15m, Young’s modulus
2.07× 1011Pa, Poisson’s ratio 0.3 and the density 7669kg/m3. For the fluid, the
density is chosen as 1000kg/m3 and the speed of sound 1524m/s. The analytical
solution to which the numerical results will be compared is the series solution
published by Junger and Feit [8].

a

n
r

θ

   incident wave

x

y

z

farfield point

Figure 1: Scattering from an spherical shell with radius a.

The shell was modeled with first order triangular shell element. Figure 2 shows
a low-frequency comparison between the coupling FEM/Wideband FMBEM
calculation and the series solution for the scattered pressure on the farfield points
distributed on xy plane. The ordinate of this figure is the normalized pressure
p1 = |pr/poa|, where p is the farfield scattered pressure at distance r = 1×105m
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Figure 2: Normalized farfield pressure scattered in the xy plane.

from the origin point and po is the magnitude of the incident pressure. This
figure denotes that the numerical solutions based on the proposed algorithm in this
paper agree with the analytical solutions well. Figure 3 shows that the Normalized
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Figure 3: Normalized farfield pressure sensitivity values in the positive x axis with
different ka.
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Figure 4: Relative error of the normalized farfield pressure sensitivity in the
positive x axis with ka = 1.0.
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Figure 5: CPU time used to calculate the farfield pressure with ka = 1.0.

farfield scattered pressure sensitivity values in the positive x axis obtained by using
FEM/Wideband FMBEM algorithm agree well with analytical solutions and it
implicates the accuracy of the presented algorithm, where the design variable is
chosen as the radius a of the spherical shell structure. The relative error is defined
as

error =
|pnumer − panaly|

|panaly| , (18)
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where the pnumer denotes the numerical solution and the panaly denotes the
analytical solution. Actually, in the numerical evaluation of these boundary integral
equations, truncation and numerical integration errors are the main errors. By
observing Fig. 4, it can be found that the solution converges well when refining
the boundary mesh and it implicates the accuracy of the presented algorithm. The
CPU time used to calculate the farfield acoustic pressure values in the positive x
axis is plotted in Fig. 5, which demonstrates the high efficiency of FEM/Wideband
FMBEM algorithm for three dimensional fluid-structure interaction problems.

4 Conclusions

A coupling algorithm based on FEM and wideband FMBEM is presented for
the simulation of fluid-structure interaction and structural acoustic sensitivity
analysis using the direct differentiation method. The FEM was used to model the
structural parts of the problem. To avoid the need to mesh the fluid domain, the
wideband FMBEM formed by combining the original FMBEM and the diagonal
form FMBEM is used to accelerate the matrix-vector products in the boundary
element analysis. The presented algorithm makes it possible to predict the effects
of arbitrarily shaped vibrating structures on the sound field numerically.

However, the iterative solution of the system of linear equation based on
GMRES method is often the most time-consuming part of the simulation
for modeling fluid-structure interaction problems numerically by using the
coupling FEM/wideband FMBEM algorithm. The development of a more suitable
preconditioner is required and this problem is now being addressed in an ongoing
research project. Future work also includes applying the acoustic design sensitivity
analysis to shape optimizations and extending the method to three dimensional
practical problems.
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