
Meshless solution of laminar flow in a 
2D backward-facing step 

A. G. Vidal1, E. A. Divo2 & A. J. Kassab1 

1Department of Mechanical and Aerospace Engineering, 
University of Central Florida, USA 
2Department of Mechanical Engineering, 
Embry-Riddle Aeronautical University, USA 

Abstract 

A meshless procedure for 2D incompressible laminar flows is presented. The 
velocity-pressure coupling is done with the flow equations in their original form 
and no approximations or simplifications are done in the boundary conditions. 
Additionally, all needed interpolations are done with the effective Radial-Based 
Functions (RBF). The method is tested with the 2D backward-facing step and 
this new procedure predicts correctly the transition stage, in which the re-
attachment decreases and stabilizes as the flow enters in the turbulent regime. 
Keywords: meshless, CFD, incompressible flow, backward-facing step. 

1 Introduction 

Since the introduction of the Projection Method by Harlow and Welch [1], the 
science of Computational Fluid Dynamics (CFD) has become a fundamental tool 
for engineering calculations and design. Basically, the velocity-pressure coupling 
is done in a segregated way, one equation at a time. After the publication of this 
procedure, almost all numerical methods developed in Computational Fluid 
Dynamics (CFD), with some minor modifications, the original flow equations 
are transformed into a series of consecutive and explicit equations for velocity, 
pressure and mass correction, this last one needed to satisfy the mass balance. In 
spite of the improvement in all CFD techniques, even today the solution of 
complex elliptic problems, such as the backward-facing step or lid-driven cavity 
is still a mayor challenge. These two cases have produced by far the largest 
amount of differences in numerical results between procedures. Many authors 
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have explained this effect as bifurcation of the solution. The idea of this work is 
to present a meshless localized RBF procedure to solve the flow equations in the 
original form, so that there is no simplification or approximation of any 
boundary condition. The velocity-pressure coupling procedure is the same one 
developed in [2]. The staggered point distribution approach (or grid) is selected 
and the RBF scheme is chosen to perform any necessary interpolation. Finally, in 
order to keep the numerical diffusion at a very low level, the well-known flux-
limiting scheme will be used in the discretization of the convection term. 

2 Velocity-pressure coupling 

The finite volume method proposed by Patankar, with SIMPLE and SIMPLER 
techniques as velocity-pressure coupling procedures, is the most popular method 
in CFD. These coupling schemes are used in most commercial and 
noncommercial CFD packages, using finite volume, finite difference or finite 
element method as the main discretization procedures. However, these coupling 
procedures are known to produce significant numerical diffusion. The most 
general procedure (SIMPLER) can be summarized as: 
 

1. Discretize momentum equation ( grpp


⋅−= ρˆ ): 
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2. Compute pressure by introducing Eq. (1) into continuity equation: 
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3. Update pressure in Eq. (1) and solve for velocity. 
4. Correct velocity to enforce mass continuity: 
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where the term v′⋅∇


ˆ  is frequently neglected. The first comment that it is 
convenient to make to this procedure is that, the main coefficient Pa  is inside all 
partial derivatives in pressure and mass-correction equations. The structure of 
this coefficient is: 

 DYPDXPLP CvCuCa −−=ν  (5) 
 

with CL, CDX and CDY the coefficients of the discretization scheme. For a non-
uniform mesh, the coefficient Pa  is a function of the position. This coefficient 
will produce clearly numerical diffusion in Eqs. (1) and (2). The only way that 
Eqs. (14) and (16) will not produce numerical diffusion is with a mesh of 
constant spacing and using central differencing in convection terms. Since Pa  
gathers the diffusion and convection terms, central differencing for convection 

56  Boundary Elements and Other Mesh Reduction Methods XXXV

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press



derivative will not have any coefficient. With a uniform mesh, the diffusion term 
of v


ˆ  is zero and the Eq. (4) becomes exactly the same projection procedure of 
Harlow and Welch [1]. By updating velocity in SIMPLER, the procedure 
becomes the same algorithm [1], but in SIMPLE, updating pressure with p′  is 
updating pressure with the velocity potential. This explains why SIMPLE takes 
so many iterations to converge and why this procedure works only when velocity 
is corrected and not pressure (as initially inferred). 
      Another problem that SIMPLE and SIMPLER have is, in pressure 
equation (4), boundary conditions (pressure coefficient zero in all boundaries) 
imply that the viscosity of the fluid is infinite at the wall, inflows and outflows. 
The condition of viscosity infinite is correct at the wall but, at inflows and 
outflows is evidently incorrect. At inflows, this change in the value of the 
viscosity of the fluid produces a force that helps the motion of the fluid but, at 
outflows, this change in viscosity produces a force that decelerates the fluid. This 
is one reason why pressure equation (4) has problems converging, unless a 
block-correction or multigrid algorithm is used. A useful alternative that solves 
the problems associated to both segregated and direct full coupling procedures is 
presented in [12]. In general, this scheme uses the segregated grid arrangement in 
the same way as finite volume method. The fundamental aspect of this coupling 
approach is that the velocity-pressure coupling is done with the momentum and 
continuity equations in the original form. After substituting finite differencing 
expressions for both, viscous and convection terms, as well as the pressure 
gradient, the momentum and continuity equations can be written in the form: 
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     In the system (6), pressure and velocity components are located at different 
points, as expected in a staggered point distribution. The coupling of u, v and p is 
performed by writing, in all possible ways, a linear system of 3 equations of the 
kind: 
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whose solution is: 
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      Having in mind the linear system (6) and its solution (7)-(8), the discretized 
system (6) may be rearranged in many different ways. The solution procedure 
presented in [2] re-writes Eq. (6) in all possible permutations of both velocity 
components adjacent to pressure (see [2] for full details). The big advantage of 
this coupling procedure is that little memory is required to solve the 
corresponding linear system and that there are no errors in the boundary 
conditions. For the specific case of pressure, the problem is just an Initial Value 
Problem (IVP), and additionally in incompressible flows, only a reference for 
pressure is needed.  

3 Additional numerical schemes 

The velocity-pressure coupling alone is obviously not the only numerical issue to 
be solved in any fluid flow simulation. There are some other aspects where a lot 
of care must be taken in order to have a robust numerical procedure. 

3.1 Convection discretization 

Since the introduction of the first numerical procedures for CFD, the selection of 
a suitable discretization procedure for convection terms has not been an easy 
task. If the diffusion terms are going to be approximated with a second order 
finite differencing scheme, it makes sense to use a similar approach for 
convection terms and pressure gradient so that the whole scheme is second order.  
      It is well known that central schemes suffer from instability and that any 
upwinding approach is quite desirable, at the cost of some numerical diffusion. 
Since the procedure presented here is intended to be used in normal engineering 
calculations, as well as in DNS and LES simulations, the error in the convection 
term discretization must be kept as low as possible. One alternative, quite 
popular in the solution of the Euler equations and in the simulation of 
compressible flows is the idea of flux limiters. With all these considerations, in 
this work, the convection term will be discretized with the Osher flux limiter 
[23], with 2=β , and using RBF to interpolate both velocity components at the 
corresponding interfaces. 

3.2 Interpolation 

Independent of the location of the variables in the grid, interpolation is a 
mandatory procedure. For example, collocated grid arrangement (all variables 
located at the same place) needs interpolation for the mass balance equation. 
Here the bilinear interpolation produces nonphysical oscillations and some 
nonlinear interpolation schemes have been proposed with great success, as for 
example [24]. On the other hand, the segregated approach, where velocity 
components and pressure are located at different positions and interpolation for 
the convection terms is needed. In this case, bilinear interpolation has been 
widely used since is stable and provides fast convergence. For example, in [25] 
and [26] a Radial-Based Function (RBF) procedure is chosen to perform all 
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interpolations. In this procedure, RBF is used basically to compute the 
coefficients of all derivatives without the use of a connectivity mesh. No matter 
if this localized RBF collocation procedure is used to compute interpolations or 
derivatives, the main idea is that any field φ  is represented by multiplying the 
basis functions by a set of expansion coefficients where, for stability reasons, a 
series of NP polynomial functions ( )xPk



 are added to the interpolation scheme: 

 ( ) ( ) ( )∑∑
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+
=
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     With respect to the basis function, the most accurate and stable one belongs to 
the group of Inverse Hardy Multiquadrics, which is of the form: 
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where ( )xrj

  is the Euclidean distance. At this moment, there is no unique way to 
determine the parameter c so different formulations are employed. The 
expansion coefficients are then computed by writing Eq. (9) in every 
neighboring point and solving the corresponding linear system: 
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     By substituting (11) in (9), a general interpolation scheme is obtained:
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     This Expression can be written as:

  

 ∑
=
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i
iib

1

φφ  (13) 

 
      The calculation procedure (9)-(12) must be preceded by a proper selection of 
the free parameter c. Practice has showed that the best results are obtained when 
the condition number of the matrix G in Eq. (11) is between 1010 and 1012. 

4 Proposed algorithm 

As mentioned earlier, the method proposed here is a combination of several 
techniques found in FVM, FEM and meshless. The complete discretization 
procedure is: 
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 Use a segregated grid arrangement for velocity components and 
pressure; 

 Discretize the diffusion term with second order finite differences; 
 Discretize the convection term with the Osher flux limiting scheme; 
 Use RBF to interpolate velocity components (needed in the flux limiting 

scheme); 
 Use second order central differencing for pressure gradient; 
 Use second order central differencing for continuity equation; 
 Solve the resulting system with the procedure explained in [8]. 

 
     For the case of 2D steady flows, the main solution sequence proposed is: 
 

1. Set an initial guess for velocity and pressure; 
2. Set inflow and wall boundary conditions; 
3. Compute diffusion coefficients in momentum equation and store them; 
4. Compute pressure gradient coefficients and store them; 
5. Compute coefficients in continuity equation and store them; 
6. Store current velocity components; 
7. Update velocity in outflow; 
8. Compute momentum equation coefficients; 
9. Perform block-corrections; 
10. Interpolate velocity to the other grids; 
11. Do some sub-iterations: 

11.1 Update main variables from flow equations; 
11.2 Adjust pressure of reference (to reduce numerical errors); 
11.3 Find maximum increment. 

 
     If solution has not converged, go to step 6. 

5 Laminar flow in a 2D backward-facing step 

The backward-facing step is one of the hardest validation cases since the 
structure of the flow is highly elliptic and it is excellent to show the robustness of 
any numerical procedure. This flow is characterized by a straight entry length, 
where the flow may or may not reach a fully developed state. Later the fluid 
enters in a sudden expansion and a big vortex is formed. In this zone, the 
structure is completely elliptic. Finally, the flow re-attaches and the parabolic 
regime is back again. In general, at low Reynolds numbers, the re-attachment 
increases and, when the flow enters in the transition stage, the re-circulation zone 
reduces to increase in size later as the speed of the flow increases. 
      In general, there is a very important disagreement between experiments and 
numerical predictions when the fluid enters in the transitional regime. Under 
very few exceptions, almost all numerical calculations fail to predict transition. 
      In [3] a time-dependent SIMPLE scheme is used and different transient 
procedures are tested. Calculations with Reynolds number of 800 are performed 
with an inflow length of 40. Re-attachment occurs at x=9.55 after 50 seconds. A 
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similar case can be seen in [4] where calculations are done with Reynolds of 800 
and an inlet of x=5. A study is done by modifying the expansion ratio but no 
differences are reported with the entry length. A different approach is used in [5], 
where the boundary element method is used with primitive variables and an 
entry length of 0.02 is set. Validations are presented at Reynolds number of 500 
but no comparisons are presented. Similarly in [6], a spectral method with 
primitive variables is used and calculations with Reynolds number of 800 are 
performed. Re-attachment is consistent with other references but no information 
of the location of the inlet. References [7] and [8] are similar cases where only 
one Reynolds number is used, 800. A study of outflow length is performed and 
the re-attachment is found to be consistent with previous works. 
     Some incomplete works can be found in [9] and [10]. In the first case, 
calculations with open and enclosed facing-step are performed but no 
comparisons are done on the re-attachment. In [10], SIMPLE scheme is used to 
perform 3D calculations with heat transfer but no information of inflow location 
is supplied. Here, some patterns are shown but no information on the re-
attachment.  
     In the literature, very few experiments have been published. The classical 
reference [11] is a complete study of the behavior of the flow in the whole 
laminar regime. The expansion rate used is 1.94 and the entrance length equal to 
x=40, claimed to be enough to obtain fully developed flow at all Reynolds. 
Measurements show clearly a 3D pattern. The re-attachment shows a permanent 
increment up to Reynolds number to 1,200, but then the size of the vortex 
decreases. Additionally, numerical calculations are performed using the 
measured inflow velocity profile and SIMPLE procedure. These calculations 
show an increment up to Reynolds of 450-500 and then decreases. This is the 
only numerical prediction that shows a decrement in the size of the vortex. 
Another series of experiments can be found in [12]. The geometry and conditions 
are the same as [11] and the results are in good agreement. Here, transition is 
measured at Reynolds number of 1,200 when the re-attachment decreases.  
      Several other works have been published where the Reynolds number used 
ranges up to 1,000. For example, in [13] an expansion ratio of 2 is used and the 
entrance length is set to 1 and the Reynolds number ranges from 150 up to 1050. 
Re-attachment increases permanently. Stability analyses show that for Re from 
750 and over, the flow becomes unstable to any 3D instability. Their results 
suggest that the flow is stable up to 1050 but they have not been able to compute 
for larger Reynolds. In [14], different entrance locations are tested. SIMPLE 
method with QUICK convection scheme is proposed and extrapolation for 
outflow boundary conditions is used. Calculations are done up to Reynolds of 
800 and the re-attachment increases always. If no entrance, re-attachment 
increases tremendously. Similarly, in [15], computations are performed up to 
Reynolds of 800 with an expansion ratio of 1.94. In this paper, different 
convection schemes are tested, including TVD. All re-attachments increase as 
Reynolds except for the hybrid central-upwind that shows a decrement after 
Reynolds of 500. When refining the grid, all methods get an increasing Re-
attachment. Using an expansion ratio of 1.94 and Reynolds from 100 to 1,000 
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[16], two different entry lengths are used, 0 and 10. In all cases re-attachment 
always increases. In [17], and expansion ratio of 1.94 is used with an entrance 
length of 2. Streamline-vorticity formulation is proposed and they consider that 
for Re>1200 the flow is transitional. For Reynolds equal to 800, results agree 
with one reference but there is no detail for calculation with Reynolds larger than 
1000, only graphics at different scales. Reference [18] is perhaps the most 
complete calculation using the streamline-vorticity formulation. Some 
validations are presented with an expansion ratio of 1.94. It presents full results 
with expansion ratio of 2 and an inflow length of 20. Reynolds number is varied 
from 100 to 3,000. Re-attachment always grows. No mention of transition and 
claims very accurate results. After Reynolds of 500, results differ from 
experiments. No mention that for higher Re, re-attachment decreases. Claim that 
re-attachment increases linearly as Reynolds increases. A study using primitive 
variables and Reynolds from 800 to 1,600 can be seen in [19]. Validation is 
presented for Reynolds of 800 and Hopf bifurcations are searched. Critical 
Reynolds is close to 1,200. In [20], a streamline-vorticity Boundary Element 
Method is presented. No entrance region is set and Reynolds numbers are 
computed from 100 to 50,000. Mesh used is too coarse for the results to be 
correct. For Reynolds equal to 100, re-attachment is very low compared to other 
calculations. For 800=Re good agreement is found but, for 000,1=Re , no 
comparison is done. On the other hand, in [21], primitive variables and SIMPLE 
is used. Study effect of step height is done. Expansion ratio from 1.25 to 1.75 is 
analyzed and Reynolds number computed from 50-900. Good agreement with 
available data. In [22], a curvilinear coordinate system with QUICK scheme is 
proposed, with primitive variables and fractional step method. No entry length is 
used and the inflow profile is parabolic. Calculations are done with Reynolds up 
to 800 and re-attachment always increases. A different work can be found in 
[23], where a 3D simulation is done. The expansion ratio is 1.94 and the entrance 
region is equal to 1. Numerical predictions are performed for Reynolds from 100 
to 800. Re-attachment increases always. One stability analysis through 2D DNS 
simulations can be seen in [24], where calculations are done for Reynolds 
number of 500 and 800 with different grid sizes. A very interesting study can be 
found in [25], where a streamline-vorticity formulation is used. The geometry is 
a sudden expansion, which can be seen as a double backward-facing step. For 
Reynolds number of 550, an asymmetric solution is obtained and for Reynolds of 
786, three different solutions are found, two of them asymmetric. There are some 
other references related to the backward-facing step, as for example [26] where a 
streamline-vorticity method is used, or [27] where a SIMPLE-based method is 
used. A transient study can be found in [28], where at the beginning, two 
separate vortices are formed, but after some time, they unify into one large 
vortex. In other works, as for example [29], several calculations with a Reynolds 
number from 10 to 610 are done, obtaining good agreement with experimental 
data. In a similar study [30], a calculation with a Reynolds number of 800 is 
done and good agreement is presented with available data. An old reference but 
very interesting is [31], being one of the first to report that the re-attachment is a 
function of the Reynolds number for laminar, but constant in turbulent regime. 
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6 Results and discussion 

Due to the large difference between calculations and experiments, we decided to 
use exactly the same geometry than in [11]. An expansion ratio of 1.94 was used, 
an inlet length of 38.4 and an outlet length of 100. At the inlet, a power profile 
was set in order to have a realistic boundary layer:

  

 [ ] 100/11 s
u
u

−= ; 11 +≤≤− s  (14) 

 
 

 

Figure 1: Re-attachment for an expansion ratio of 1.94. 

      A total of 288,208 pressure points were used, with an aspect ratio of 4:1. The 
calculations took about 2–3 hours for the lowest Reynolds and about 95 hours for 
Reynolds higher than 2,000. Figure 1 shows the comparison of the re-attachment 
of this work and the experimental measurements of Armaly [11]. At low 
Reynolds numbers, when viscous effects are dominant, the agreement is 
excellent. When the speed of the flow reaches Reynolds 800, the calculations 
became unstable and different solutions were found. For that Reynolds number, 
if the solution for 600 was used, the re-attachment was slightly higher but, when 
the solution for 1,000 was used, a low vortex was obtained. A similar situation 
was observed for the case of 1,200, 1,400, 1,600 and 1,800. This phenomenon 
can be explained because at Reynolds 800, inertia terms become important and 
they may, or may not, cancel the viscous terms, producing several solutions 
depending on convergence parameters. Once the speed of the flow is increased, 
inertia forces become dominant and basically one solution is obtained, as it was 
observed for Reynolds of 2,000 and over.  
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     It is important to underline that, for Reynolds over 600, our results are under-
predicted but the transitional state is correctly described. None of the references 
we reviewed, with the exception of the calculations of [11], show this behavior. 
We have to recall that all those studies show a permanent increment in the size of 
the re-attachment. 

7 Conclusions 

A meshless approach for incompressible fluid flow calculations has been 
proposed with the flow equations solved in strong form. The transitional regime, 
decrement of the re-attachment is correctly described. 
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