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Abstract 

This paper presents the development and implementation of a Meshless two-
phase incompressible fluid flow solver and its acceleration using the graphics 
processing unit (GPU). The solver is formulated as a Localized Radial-basis 
Function Collocation (LRC) Meshless method and the interface of the two-phase 
flow is captured using an implementation of the Level-Set method. The Compute 
Unified Device Architecture (CUDA) language for general-purpose computing 
on the GPU is used to accelerate the solver. Through the combined use of the 
LRC Meshless method and GPU acceleration this paper seeks to address the 
issue of robustness and speed in computational fluid dynamics. The LRC 
Meshless method seeks to mitigate the issue of extensive and time-consuming 
user input of mesh-based methods by representing the field variables on a set of 
scattered points that need not meet stringent geometric requirements such as 
connectivity and poligonalization. The method is shown to render very accurate 
and stable solutions and the implementation of the solver on the GPU is shown 
to accelerate the solution process significantly. 
Keywords: two-phase flow, meshless methods, RBF, GPU, parallelization. 

Boundary Elements and Other Mesh Reduction Methods XXXV  11

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

doi:10.2495/BEM1300 12



1 Introduction 

1.1 Graphics processing unit acceleration 

The graphics processing unit, or GPU, is a specialized piece of computer 
hardware designed to achieve high performance in the execution of parallel 
computations required for 3-D graphics. The GPU began as a fixed-function 
device, with programmers having only predefined options for controlling the 
graphics pipeline. In 1999, NVIDIA introduced the first programmable vertex 
engine, see [1], marking the beginning of a trend towards flexible graphics 
hardware. As more pieces of the graphics pipeline became programmable, 
programmers began implementing general-purpose, i.e. non-graphics related, 
programs on the GPU. With the recent introduction of the Compute Unified 
Device Architecture (CUDA) programming language by NVIDIA, programmers 
can now use a C-like language to achieve complete general-purpose 
programmability of the GPU. Different memory spaces and execution 
configurations on the GPU are exposed to the programmer, offering more 
flexibility and familiarity than programming within the graphics framework.  
      Riegel et al. [2] implemented the Lattice Boltzman method using CUDA, 
observing a speedup factor of 9  over  a  multi-core  CPU.  Thibault  [3]  
observed a speedup factor of 13 using a single GPU and a speedup factor of 100 
using a quad-GPU setup for solution of the Navier-Stokes equations (NSE) using 
a MAC grid and finite-differencing, both speedups being with respect to a single-
core CPU. Cohen and Molemaker [4] reported that GPU-acceleration provided 
an 8 times speedup with respect to a high-end eight-core CPU for the solution of 
the NSE using the Boussinesq approximation and a finite-volume method. 
Brandvik and Pullan [5] implemented a finite-volume solution of the 3-D Euler 
equations using CUDA and reported a speedup factor of 16 over a single-core 
CPU. 

 and  Senocak

1.2 Meshless methods 

Classical methods in CFD use a mesh or a grid of distributed points that have a 
certain predefined connectivity. Three of the most popular and widely used 
classical methods are the Finite Differencing Method, the Finite Volume 
Method, and the Finite Element Method. Each of these methods requires the user 
to generate a mesh in order to discretize the solution domain, and the accuracy 
and convergence of the solution is strongly dependent on mesh quality, see [6]. 
Idelsohn and Oñate [7] identify the main difficulties in mesh building as the need 
for a conforming mesh, in which all nodes must lie at element vertices, the need 
to adhere to boundary contours, and the need to have well-shaped (non-
degenerate) elements. Meshless methods eliminate two of these issues: the 
connectivity between nodes does not need to be conformant, and since no 
elements are used the presence of degenerate elements is not an issue. 
      Meshless methods were first introduced in the 1990s in order to avoid the 
issues prevalent in mesh-based methods. The identifying feature of a Meshless 
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method is that the shape functions used to represent the field variables depend on 
the nodal distribution alone and are independent of connectivity, see [8]. The 
Localized Radial-basis Function (RBF) Collocation (LRC) Meshless Method 
formulated by Divo and Kassab in [9], by Sarler and Kosec in [10], and later 
reformulated as an RBF-enhanced generalized finite-differencing scheme in [11]. 
The method only requires a nodal distribution, and has been shown to be robust 
for irregular nodal distributions, abating the need for user intervention and 
making the mesh-generation process entirely automated, eliminating the main 
bottleneck in CFD analysis. The LRC is based on a local collocation of RBF and 
does not require a structured grid. This collocation leads to a linear system of 
equations that can be solved for the coefficients of the expansion functions, 
leading to interpolation vectors that can be pre-computed and stored for each 
node. Any linear differential operator can be applied to the expansion functions, 
thus differential operators are reduced to vectors and the application of such 
operators becomes a simple vector-vector product. 

2 Methodology 

2.1 Solution of the Navier-Stokes equations 

The incompressible Navier-Stokes equations, given by Eqn. (1), are fully-
coupled nonlinear partial differential equations: 
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      In two-phase flow a moving boundary between the two phases exists and the 
flow will be governed by two equations, one for each phase of the flow (along 
with the continuity equation, which holds over the entire fluid domain):  
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      An additional boundary condition is needed at the fluid interface, and is 
given by Eqn. (3), where Ι denotes the fluid interface, n  denotes a unit vector 
normal to the interface, σ is the coefficient of surface tension and κ is the 
curvature of the interface, see Batchelor [12] for details. 
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      Combining Eqns. (2) and (3) to form an equation which is valid over the 
entire domain we can arrive at: 
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      In Eqn. (4), δ(d) is the Dirac delta function and d is the signed distance from 
the fluid interface. We define the signed distance as the positive distance from 
the interface when x  is in the area of the domain occupied by the lighter fluid, 
and as the negative distance from the interface when x  is in the area of the 
domain occupied by the heavier fluid. Equation (4) is solved using a fractional 
step method and integration in time is carried out using a first-order Euler time 
stepping scheme as shown in Divo and Kassab [9]. In this case, the pressure can 
be initialized to the hydrostatic pressure as long as the initial velocity is set to 
zero. 

2.2 Numerical treatment of the fluid interface 

The Level-Set Method (LSM), introduced by Osher and Sethian [13], is used to 
track the fluid interface. The LSM embeds an interface in a given dimension as a 
function in the next highest dimension. For example, a circle can be represented 
by the LSM using a cone. The region inside of the circle is defined where the 
Level-Set is negative, the region outside of the circle is defined where the Level-
Set is positive, and the edge of the circle is defined where the Level-Set is zero, 
as shown in Figure 1. The Level-Set function is treated as a scalar property of the 
fluid, and is advected using Eqn. (5). 

 ( ) 0V
t
ϕ ϕ∂
+ ⋅∇ =

∂



 (5) 

 

 

Figure 1: Level-Set representation of a circle. 

      Equation (5) is advanced in time using the same first-order Euler method 
used in the solution of the Navier-Stokes equations, and so the LSM is 
straightforward to implement in conjunction with the fluid solver. The density 
and viscosity can be defined at any point in the domain as: 
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where ( )sH ϕ  is the smoothed, or mollified, Heaviside function that smears the 

interface over a predefined interface thickness: 
1 1( ) 1 sin( )
2sH ϕ πϕϕ

ε π ε
 = + +  

. 

The thickness i is controlled using the parameter ε as: /i ε ϕ= ∇ . Additionally, 
the Dirac delta function in Eqn. (4) is replaced with the mollified delta function, 
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which is defined as the derivative of the mollified Heaviside function with 
respect to ϕ . 

2.3 Localized radial-basis function interpolation 

In order to discretize Eqn. (4), an RBF interpolation of the field variables is 
performed over a set of scattered points or data centers. An RBF is a scalar 
function whose value at a point depends on the distance from the point to a 
predefined data center. The RBF used herein is the so-called inverse-
Multiquadrics RBF: 
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      The value of the shape parameter c can be estimated to optimize the 
interpolation. Consider a general field variable given by ( )f x , of which several 
values if  are known at points ix  .  Let iχ  be an inverse-Multiquadrics RBF 
whose data center is the point ix . The value of the function can be approximated 
at any point x  using the known values of the function by performing a local 

RBF expansion according to: 
1

( ) ( )
NF

i i
i

f x xα χ
=

= ∑   where the iα are scalar 

expansion coefficients and NF is the number of influence points. These 
coefficients can be solved as: { } [ ] { }1 fα χ −= . Therefore, interpolation of the 
function ( )f x  at any point within the influence region such as the data center kx  

is: { } { }T
k kf fζ= . Notice that the interpolation of the function value at the data 

center kf  is accomplished through a simple vector-vector inner product where 
the interpolation vectors { }kζ  can be pre-computed and stored for every data 
center prior to the solution process as they are only dependent on geometry and 
the parameters of the RBF.  
      Now consider the nodal distribution shown in Figure 2(a). The field variable 

( )f x  is known at each of the nodes and the different derivatives of ( )f x  at the 
data center kx  are desired. Let us introduce several virtual nodes, denoted by *s 
in Figure 2(b). Any finite-difference stencil, such as forward or backward 
differencing, can be used. Therefore, any linear differential operator can be 
applied over the field variable and recast as a simple inner product of a pre-
computed operator vector { }  and the vector { }f of field variable values within 

the influence region: { } { } { }T
k kf f=  . Furthermore, accurate and stable 

evaluation of the convective derivatives in the momentum equation, the 
advection-diffusion equation for pressure, and the Level-Set advection equation 
requires the use of an upwinding scheme. For a general field variable ( )f x  

being advected by a general velocity field V


, the derivative operators used to 
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calculate the spatial derivatives of ( )f x  in each of the coordinate directions can 

be upwinded using the components of V


. These operators are also pre-computed 
and stored for each data center using forward, backward, and central 
differencing, and the derivative operator to be applied is determined using the 
Courant–Friedrichs–Lewy condition. 
 

 

Figure 2: Irregular point distribution and virtual node distribution. 

2.4 Parallelization and GPU-acceleration 

Parallelization of the solution process for implementation on the GPU requires 
the segmentation of the domain into groups of nodes, or segments. The 
segmentation of the nodes is not a trivial process. In order for the solution to 
operate efficiently in parallel, each segment should contain nodes that are within 
close physical proximity to one another, ensuring memory and communication 
requirements are kept to a minimum for each segment. Segmentation is 
accomplished using a recursive bisection algorithm, see [14]. Each segment 
produced is directly mapped to a block on the GPU, with each thread on the 
GPU handling one node in the solution domain. In order to execute a kernel on 
the GPU, an execution configuration is required at run-time and it specifies the 
total number of threads executed. The execution configuration is limited by the 
number of registers and shared memory per multiprocessor on the GPU. We used 
the NVIDIA GeForce 9800 GT, which has 8192 registers and 16 KB of shared 
memory per multiprocessor.  
      Two versions of the fluid solver were programmed: one that was entirely 
serial and executed solely on the CPU, and one that had portions of the code 
ported to the GPU. In order to determine which routines in the solver should be 
ported to the GPU, the serial code was analyzed for bottlenecks by running two 
problems on four grid sizes and recording the execution times of each of the 
primary subroutines in the solver. Each solution was run for 100 time steps, and 
the execution times were recorded every 10 time steps. The solution of the 
Poisson equation for the Helmholtz potential and the solution of the advection-
diffusion equation for the pressure were found to take over 99% of the total 
execution time of each time step and so these subroutines were targeted for 
GPU-acceleration. 
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      On the GPU, each thread uses its local influence point array to perform 
differential operations using the shared memory of the block. For the solution of 
the Poisson and advection-diffusion equations, all data such as differential 
operators and boundary node identifiers is transferred to the GPU before iteration 
begins. At each time step, the right-hand sides of the equations and the boundary 
conditions are transferred to texture memory on the GPU, and the global 
unknown vectors are transferred to and from global memory on the GPU. Each 
thread block loads the nodal values it requires from global to shared memory, 
performs operations using the shared data, and then writes all values required by 
other thread blocks to global memory.  
 

3 Results 

3.1 Testing and verification  

To demonstrate the robustness of the solver in two-phase flow a dam break 
problem setup as shown in Figure 3 was run using three nodal distributions: 
Evenly-spaced, perturbed, and perturbed twice as seen in Figure 4. At t=0, the 
fluid is allowed to collapse under gravity. Figure 5 shows the evolution of the 
dam break flow on these three nodal distributions through time. They show that 
solutions to the dam break problem on successively disordered nodal 
distributions agree very well, demonstrating that the solver is robust regarding 
both the discontinuity between the interfaces as well as with the ability to handle 
irregular nodal distributions.  
 
 

 

Figure 3: Dam break problem setup. 
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Figure 4: Point distribution: evenly-spaced, once perturbed, and twice 
perturbed. 

 

 

 

 

Figure 5: Dam break problem evolution after t=0.1783s, 0.4047s, and 
0.5821s: (a) evenly-spaced points, (b) once perturbed and (c) twice 
perturbed. 

      A droplet problem in which a droplet of a dense fluid was allowed to fall 
under the force of gravity through a lighter fluid into a pool of the dense fluid 
was run using a 34 × 34 node Meshless point distribution. The problem setup is 
shown in Figure 6 and Figure 7 shows the evolution of the droplet flow. 
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Figure 6: Droplet problem setup. 

 

Figure 7: Evolution of the droplet problem. 

3.2 Benchmarking of GPU-accelerated routines 

Benchmarking of the two GPU-accelerated routines was performed using four 
different grid sizes for two different problems, one single-phase and one two-
phase. The four grid sizes used were 18×18, 34×34, 66×66, and 130×130.  
Figure 8 shows the speedup factors for each of these grid sizes and problems and 
the execution time per time step for the serial code and the GPU-accelerated 
code as a function of grid size. As can be seen, the acceleration obtained is 
independent of the problem being solved, and strongly depends on grid size. It 
was observed that the acceleration factor increases considerably as the grid size 
increases. It is interesting to note that the execution time for the GPU-accelerated 
code scales fairly linearly with grid size, while execution time for the serial code 
appears to scale quadratically with grid size. This is a result of the architecture of 
the GPU. As more threads are executed on the device, its efficiency increases 
due to the higher occupancy per multiprocessor than for lower numbers of 
threads. 
      Concerning accuracy and robustness, the GPU-accelerated code performs 
identically to the serial code. Many of the examples presented in the previous 
sections concerning accuracy and robustness were computed with the GPU-
accelerated code. Since all of the data is identical for the two codes, it would be 
trivial to display any comparative results, as they may already be found 
throughout the solutions previously discussed. 
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Figure 8: Speedup factors for one and two-phase problems on several grid 
sizes. 

      The data discussed above concerns the acceleration of the entire time step. 
Looking at individual subroutines rather than the time step as a whole, the largest 
speedup factor observed was for the solution of the Helmholtz potential in a dam 
break problem on a 130×130 grid, as shown in Figures 9(a) and (b). The speedup 
factor in this case was found to be 16.07. Table 1 compares the maximum 
speedup factor observed in this paper to other contemporary GPGPU projects in 
CFD. The speedup factor achieved in this paper is fairly consistent with other 
published speedup factors. 

Table 1:  Speedup factor comparison. 

Author Method Speedup factor 
This paper Meshless 14.3 
Riegel et al. [2] Lattice-Boltzman 9 
Thibault and Senocak [3] FDM 13 
Brandvik and Pullan [5]  FVM 16 

 

 

Figure 9: Dam break problem with 130x130 points: (a) execution times and 
(b) speedup factors. 
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4 Conclusions 

This paper presents the development and implementation of a Meshless two-
phase incompressible fluid flow solver and its acceleration using the graphics 
processing unit (GPU). The solver is formulated as a Localized Radial-basis 
Function Collocation (LRC) Meshless method and the interface of the two-phase 
flow is captured using an implementation of the Level-Set method. The Compute 
Unified Device Architecture (CUDA) language for general-purpose computing 
on the GPU is used to accelerate the solver. Through the combined use of the 
LRC Meshless method and GPU acceleration this paper seeks to address the 
issue of robustness and speed in computational fluid dynamics. The LRC 
Meshless method seeks to mitigate the issue of extensive and time-consuming 
user input of mesh-based methods by representing the field variables on a set of 
scattered points that need not meet stringent geometric requirements such as 
connectivity and poligonalization. The method is shown to render very accurate 
and stable solutions and the implementation of the solver on the GPU is shown 
to accelerate the solution process significantly. 
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