
A GPU-accelerated meshless method for
flows two-phase incompressible fluid

J. M. Kelly1, E. A. Divo2 & A. J. Kassab3
1Institute for Computational Engineering and Sciences,
The University of Texas at Austin, USA
2Department of Mechanical Engineering,
Embry-Riddle Aeronautical University, USA
3Department of Mechanical and Aerospace Engineering,
University of Central Florida, USA

Abstract

This paper presents the development and implementation of a Meshless two-
phase incompressible fluid flow solver and its acceleration using the graphics
processing unit (GPU). The solver is formulated as a Localized Radial-basis
Function Collocation (LRC) Meshless method and the interface of the two-phase
flow is captured using an implementation of the Level-Set method. The Compute
Unified Device Architecture (CUDA) language for general-purpose computing
on the GPU is used to accelerate the solver. Through the combined use of the
LRC Meshless method and GPU acceleration this paper seeks to address the
issue of robustness and speed in computational fluid dynamics. The LRC
Meshless method seeks to mitigate the issue of extensive and time-consuming
user input of mesh-based methods by representing the field variables on a set of
scattered points that need not meet stringent geometric requirements such as
connectivity and poligonalization. The method is shown to render very accurate
and stable solutions and the implementation of the solver on the GPU is shown
to accelerate the solution process significantly.
Keywords: two-phase flow, meshless methods, RBF, GPU, parallelization.

Boundary Elements and Other Mesh Reduction Methods XXXV 11

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

doi:10.2495/BEM1300 12

1 Introduction

1.1 Graphics processing unit acceleration

The graphics processing unit, or GPU, is a specialized piece of computer
hardware designed to achieve high performance in the execution of parallel
computations required for 3-D graphics. The GPU began as a fixed-function
device, with programmers having only predefined options for controlling the
graphics pipeline. In 1999, NVIDIA introduced the first programmable vertex
engine, see [1], marking the beginning of a trend towards flexible graphics
hardware. As more pieces of the graphics pipeline became programmable,
programmers began implementing general-purpose, i.e. non-graphics related,
programs on the GPU. With the recent introduction of the Compute Unified
Device Architecture (CUDA) programming language by NVIDIA, programmers
can now use a C-like language to achieve complete general-purpose
programmability of the GPU. Different memory spaces and execution
configurations on the GPU are exposed to the programmer, offering more
flexibility and familiarity than programming within the graphics framework.
 Riegel et al. [2] implemented the Lattice Boltzman method using CUDA,
observing a speedup factor of 9 over a multi-core CPU. Thibault [3]
observed a speedup factor of 13 using a single GPU and a speedup factor of 100
using a quad-GPU setup for solution of the Navier-Stokes equations (NSE) using
a MAC grid and finite-differencing, both speedups being with respect to a single-
core CPU. Cohen and Molemaker [4] reported that GPU-acceleration provided
an 8 times speedup with respect to a high-end eight-core CPU for the solution of
the NSE using the Boussinesq approximation and a finite-volume method.
Brandvik and Pullan [5] implemented a finite-volume solution of the 3-D Euler
equations using CUDA and reported a speedup factor of 16 over a single-core
CPU.

 and Senocak

1.2 Meshless methods

Classical methods in CFD use a mesh or a grid of distributed points that have a
certain predefined connectivity. Three of the most popular and widely used
classical methods are the Finite Differencing Method, the Finite Volume
Method, and the Finite Element Method. Each of these methods requires the user
to generate a mesh in order to discretize the solution domain, and the accuracy
and convergence of the solution is strongly dependent on mesh quality, see [6].
Idelsohn and Oñate [7] identify the main difficulties in mesh building as the need
for a conforming mesh, in which all nodes must lie at element vertices, the need
to adhere to boundary contours, and the need to have well-shaped (non-
degenerate) elements. Meshless methods eliminate two of these issues: the
connectivity between nodes does not need to be conformant, and since no
elements are used the presence of degenerate elements is not an issue.
 Meshless methods were first introduced in the 1990s in order to avoid the
issues prevalent in mesh-based methods. The identifying feature of a Meshless

12 Boundary Elements and Other Mesh Reduction Methods XXXV

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

method is that the shape functions used to represent the field variables depend on
the nodal distribution alone and are independent of connectivity, see [8]. The
Localized Radial-basis Function (RBF) Collocation (LRC) Meshless Method
formulated by Divo and Kassab in [9], by Sarler and Kosec in [10], and later
reformulated as an RBF-enhanced generalized finite-differencing scheme in [11].
The method only requires a nodal distribution, and has been shown to be robust
for irregular nodal distributions, abating the need for user intervention and
making the mesh-generation process entirely automated, eliminating the main
bottleneck in CFD analysis. The LRC is based on a local collocation of RBF and
does not require a structured grid. This collocation leads to a linear system of
equations that can be solved for the coefficients of the expansion functions,
leading to interpolation vectors that can be pre-computed and stored for each
node. Any linear differential operator can be applied to the expansion functions,
thus differential operators are reduced to vectors and the application of such
operators becomes a simple vector-vector product.

2 Methodology

2.1 Solution of the Navier-Stokes equations

The incompressible Navier-Stokes equations, given by Eqn. (1), are fully-
coupled nonlinear partial differential equations:

2

0

1()

V

V V V p V g
t

µ
ρ ρ

∇ ⋅ =

∂
= − ⋅∇ − ∇ + ∇ +

∂

 (1)

 In two-phase flow a moving boundary between the two phases exists and the
flow will be governed by two equations, one for each phase of the flow (along
with the continuity equation, which holds over the entire fluid domain):

()

()

2

2

heavier fluid

lighter fluid

h
h h h h h h

l
l l l l l l

V
V V p V g x

t

V
V V p V g x

t

ρ µ

ρ µ

 ∂
+ ⋅∇ = ∇ + ∇ + ∈ ∂

 ∂
+ ⋅∇ = ∇ + ∇ + ∈ ∂

 (2)

 An additional boundary condition is needed at the fluid interface, and is
given by Eqn. (3), where Ι denotes the fluid interface, n denotes a unit vector
normal to the interface, σ is the coefficient of surface tension and κ is the
curvature of the interface, see Batchelor [12] for details.

2 2() ()h l h l

h l

V V n n x

V V x

µ µ ρ ρ σκ∇ − ∇ ⋅ = − + ∈Ι

= ∈Ι

 (3)

 Combining Eqns. (2) and (3) to form an equation which is valid over the
entire domain we can arrive at:

 21() ()V V V p V g d n
t

µ σκδ
ρ ρ

∂
= − ⋅∇ − ∇ + ∇ + −

∂

 (4)

Boundary Elements and Other Mesh Reduction Methods XXXV 13

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

 In Eqn. (4), δ(d) is the Dirac delta function and d is the signed distance from
the fluid interface. We define the signed distance as the positive distance from
the interface when x is in the area of the domain occupied by the lighter fluid,
and as the negative distance from the interface when x is in the area of the
domain occupied by the heavier fluid. Equation (4) is solved using a fractional
step method and integration in time is carried out using a first-order Euler time
stepping scheme as shown in Divo and Kassab [9]. In this case, the pressure can
be initialized to the hydrostatic pressure as long as the initial velocity is set to
zero.

2.2 Numerical treatment of the fluid interface

The Level-Set Method (LSM), introduced by Osher and Sethian [13], is used to
track the fluid interface. The LSM embeds an interface in a given dimension as a
function in the next highest dimension. For example, a circle can be represented
by the LSM using a cone. The region inside of the circle is defined where the
Level-Set is negative, the region outside of the circle is defined where the Level-
Set is positive, and the edge of the circle is defined where the Level-Set is zero,
as shown in Figure 1. The Level-Set function is treated as a scalar property of the
fluid, and is advected using Eqn. (5).

 () 0V
t
ϕ ϕ∂
+ ⋅∇ =

∂

 (5)

Figure 1: Level-Set representation of a circle.

 Equation (5) is advanced in time using the same first-order Euler method
used in the solution of the Navier-Stokes equations, and so the LSM is
straightforward to implement in conjunction with the fluid solver. The density
and viscosity can be defined at any point in the domain as:

() ()()
() ()()

s l h h

s l h h

H
H

ρ ϕ ϕ ρ ρ ρ
µ ϕ ϕ µ µ µ

= − +
= − +

 (6)

where ()sH ϕ is the smoothed, or mollified, Heaviside function that smears the

interface over a predefined interface thickness:
1 1() 1 sin()
2sH ϕ πϕϕ

ε π ε
 = + +

.

The thickness i is controlled using the parameter ε as: /i ε ϕ= ∇ . Additionally,
the Dirac delta function in Eqn. (4) is replaced with the mollified delta function,

14 Boundary Elements and Other Mesh Reduction Methods XXXV

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

which is defined as the derivative of the mollified Heaviside function with
respect to ϕ .

2.3 Localized radial-basis function interpolation

In order to discretize Eqn. (4), an RBF interpolation of the field variables is
performed over a set of scattered points or data centers. An RBF is a scalar
function whose value at a point depends on the distance from the point to a
predefined data center. The RBF used herein is the so-called inverse-
Multiquadrics RBF:

2 2

1()
()j

x
r x c

χ =
+

 (7)

 The value of the shape parameter c can be estimated to optimize the
interpolation. Consider a general field variable given by ()f x , of which several
values if are known at points ix . Let iχ be an inverse-Multiquadrics RBF
whose data center is the point ix . The value of the function can be approximated
at any point x using the known values of the function by performing a local

RBF expansion according to:
1

() ()
NF

i i
i

f x xα χ
=

= ∑ where the iα are scalar

expansion coefficients and NF is the number of influence points. These
coefficients can be solved as: { } [] { }1 fα χ −= . Therefore, interpolation of the
function ()f x at any point within the influence region such as the data center kx

is: { } { }T
k kf fζ= . Notice that the interpolation of the function value at the data

center kf is accomplished through a simple vector-vector inner product where
the interpolation vectors { }kζ can be pre-computed and stored for every data
center prior to the solution process as they are only dependent on geometry and
the parameters of the RBF.
 Now consider the nodal distribution shown in Figure 2(a). The field variable

()f x is known at each of the nodes and the different derivatives of ()f x at the
data center kx are desired. Let us introduce several virtual nodes, denoted by *s
in Figure 2(b). Any finite-difference stencil, such as forward or backward
differencing, can be used. Therefore, any linear differential operator can be
applied over the field variable and recast as a simple inner product of a pre-
computed operator vector { } and the vector { }f of field variable values within

the influence region: { } { } { }T
k kf f= . Furthermore, accurate and stable

evaluation of the convective derivatives in the momentum equation, the
advection-diffusion equation for pressure, and the Level-Set advection equation
requires the use of an upwinding scheme. For a general field variable ()f x

being advected by a general velocity field V

, the derivative operators used to

Boundary Elements and Other Mesh Reduction Methods XXXV 15

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

calculate the spatial derivatives of ()f x in each of the coordinate directions can

be upwinded using the components of V

. These operators are also pre-computed
and stored for each data center using forward, backward, and central
differencing, and the derivative operator to be applied is determined using the
Courant–Friedrichs–Lewy condition.

Figure 2: Irregular point distribution and virtual node distribution.

2.4 Parallelization and GPU-acceleration

Parallelization of the solution process for implementation on the GPU requires
the segmentation of the domain into groups of nodes, or segments. The
segmentation of the nodes is not a trivial process. In order for the solution to
operate efficiently in parallel, each segment should contain nodes that are within
close physical proximity to one another, ensuring memory and communication
requirements are kept to a minimum for each segment. Segmentation is
accomplished using a recursive bisection algorithm, see [14]. Each segment
produced is directly mapped to a block on the GPU, with each thread on the
GPU handling one node in the solution domain. In order to execute a kernel on
the GPU, an execution configuration is required at run-time and it specifies the
total number of threads executed. The execution configuration is limited by the
number of registers and shared memory per multiprocessor on the GPU. We used
the NVIDIA GeForce 9800 GT, which has 8192 registers and 16 KB of shared
memory per multiprocessor.
 Two versions of the fluid solver were programmed: one that was entirely
serial and executed solely on the CPU, and one that had portions of the code
ported to the GPU. In order to determine which routines in the solver should be
ported to the GPU, the serial code was analyzed for bottlenecks by running two
problems on four grid sizes and recording the execution times of each of the
primary subroutines in the solver. Each solution was run for 100 time steps, and
the execution times were recorded every 10 time steps. The solution of the
Poisson equation for the Helmholtz potential and the solution of the advection-
diffusion equation for the pressure were found to take over 99% of the total
execution time of each time step and so these subroutines were targeted for
GPU-acceleration.

16 Boundary Elements and Other Mesh Reduction Methods XXXV

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

 On the GPU, each thread uses its local influence point array to perform
differential operations using the shared memory of the block. For the solution of
the Poisson and advection-diffusion equations, all data such as differential
operators and boundary node identifiers is transferred to the GPU before iteration
begins. At each time step, the right-hand sides of the equations and the boundary
conditions are transferred to texture memory on the GPU, and the global
unknown vectors are transferred to and from global memory on the GPU. Each
thread block loads the nodal values it requires from global to shared memory,
performs operations using the shared data, and then writes all values required by
other thread blocks to global memory.

3 Results

3.1 Testing and verification

To demonstrate the robustness of the solver in two-phase flow a dam break
problem setup as shown in Figure 3 was run using three nodal distributions:
Evenly-spaced, perturbed, and perturbed twice as seen in Figure 4. At t=0, the
fluid is allowed to collapse under gravity. Figure 5 shows the evolution of the
dam break flow on these three nodal distributions through time. They show that
solutions to the dam break problem on successively disordered nodal
distributions agree very well, demonstrating that the solver is robust regarding
both the discontinuity between the interfaces as well as with the ability to handle
irregular nodal distributions.

Figure 3: Dam break problem setup.

Boundary Elements and Other Mesh Reduction Methods XXXV 17

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

Figure 4: Point distribution: evenly-spaced, once perturbed, and twice
perturbed.

Figure 5: Dam break problem evolution after t=0.1783s, 0.4047s, and
0.5821s: (a) evenly-spaced points, (b) once perturbed and (c) twice
perturbed.

 A droplet problem in which a droplet of a dense fluid was allowed to fall
under the force of gravity through a lighter fluid into a pool of the dense fluid
was run using a 34 × 34 node Meshless point distribution. The problem setup is
shown in Figure 6 and Figure 7 shows the evolution of the droplet flow.

18 Boundary Elements and Other Mesh Reduction Methods XXXV

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

Figure 6: Droplet problem setup.

Figure 7: Evolution of the droplet problem.

3.2 Benchmarking of GPU-accelerated routines

Benchmarking of the two GPU-accelerated routines was performed using four
different grid sizes for two different problems, one single-phase and one two-
phase. The four grid sizes used were 18×18, 34×34, 66×66, and 130×130.
Figure 8 shows the speedup factors for each of these grid sizes and problems and
the execution time per time step for the serial code and the GPU-accelerated
code as a function of grid size. As can be seen, the acceleration obtained is
independent of the problem being solved, and strongly depends on grid size. It
was observed that the acceleration factor increases considerably as the grid size
increases. It is interesting to note that the execution time for the GPU-accelerated
code scales fairly linearly with grid size, while execution time for the serial code
appears to scale quadratically with grid size. This is a result of the architecture of
the GPU. As more threads are executed on the device, its efficiency increases
due to the higher occupancy per multiprocessor than for lower numbers of
threads.
 Concerning accuracy and robustness, the GPU-accelerated code performs
identically to the serial code. Many of the examples presented in the previous
sections concerning accuracy and robustness were computed with the GPU-
accelerated code. Since all of the data is identical for the two codes, it would be
trivial to display any comparative results, as they may already be found
throughout the solutions previously discussed.

Boundary Elements and Other Mesh Reduction Methods XXXV 19

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

Figure 8: Speedup factors for one and two-phase problems on several grid
sizes.

 The data discussed above concerns the acceleration of the entire time step.
Looking at individual subroutines rather than the time step as a whole, the largest
speedup factor observed was for the solution of the Helmholtz potential in a dam
break problem on a 130×130 grid, as shown in Figures 9(a) and (b). The speedup
factor in this case was found to be 16.07. Table 1 compares the maximum
speedup factor observed in this paper to other contemporary GPGPU projects in
CFD. The speedup factor achieved in this paper is fairly consistent with other
published speedup factors.

Table 1: Speedup factor comparison.

Author Method Speedup factor
This paper Meshless 14.3
Riegel et al. [2] Lattice-Boltzman 9
Thibault and Senocak [3] FDM 13
Brandvik and Pullan [5] FVM 16

Figure 9: Dam break problem with 130x130 points: (a) execution times and
(b) speedup factors.

20 Boundary Elements and Other Mesh Reduction Methods XXXV

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

4 Conclusions

This paper presents the development and implementation of a Meshless two-
phase incompressible fluid flow solver and its acceleration using the graphics
processing unit (GPU). The solver is formulated as a Localized Radial-basis
Function Collocation (LRC) Meshless method and the interface of the two-phase
flow is captured using an implementation of the Level-Set method. The Compute
Unified Device Architecture (CUDA) language for general-purpose computing
on the GPU is used to accelerate the solver. Through the combined use of the
LRC Meshless method and GPU acceleration this paper seeks to address the
issue of robustness and speed in computational fluid dynamics. The LRC
Meshless method seeks to mitigate the issue of extensive and time-consuming
user input of mesh-based methods by representing the field variables on a set of
scattered points that need not meet stringent geometric requirements such as
connectivity and poligonalization. The method is shown to render very accurate
and stable solutions and the implementation of the solver on the GPU is shown
to accelerate the solution process significantly.

References

[1] Lindholm, E., Kligard, M. J., and Moreton, H. A user-programmable vertex
engine. ACM Press, 2001. SIGGRAPH ’01: Proc. of the 28th Conference
on Computer Graphics and Interactive Techniques –158. , pp. 149

[2] Riegel, E., Indinger, T., and Adams, N. Implementation of a Lattice-
Boltzmann method for numerical fluid mechanics using the NVIDIA
CUDA technology. June 2009, Computer Science – Research and
Development, Vol. 23, pp. 241–247.

[3] Thibault, J. C., and Senocak, I. CUDA implementation of a Navier-Stokes
solver on multi-GPU desktop platforms for incompressible flows 2009,
47th AIAA Aerospace Sciences Meeting.

,

[4] Cohen, J.M., and Molemaker, M.J. A fast double precision CFD code using
CUDA. NVIDIA Corporation, 2009.

[5] Brandvik, T., and Pullan, G. Acceleration of a 3D Euler solver using
commodity graphics hardware 2008, 46th AIAA Aerospace Sciences
Meeting.

,

[6] Belytschko, T., Lu, Y. Y., and Gu, L. Element-free Galerkin methods.
1994, International Journal for Numerical Methods in Eng

 229
ineering,

Vol. 37, pp.

 256.
[7] Idelsohn, S. and Oñate, E. To mesh or not to mesh, that is the question...

July 2006, Computer Methods in Applied Mechanics and Engineering,
Vol. 195, pp. 4681 4696.

[8] Idelsohn, S. R., Oñate, E., Calvo, N., and Del Pin, F. The Meshless finite
element method. 2003, International Journal for Numerical Methods in
Engineering, Vol. 58, pp. 893–912.

Boundary Elements and Other Mesh Reduction Methods XXXV 21

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

–

–

[9] Divo, E. and Kassab, A.J. Localized Meshless Modeling of Natural
Convective Flows. 2008, Numerical Heat Transfer, Part B: Fundamentals,
Vol. 53, pp. 487 509.

[10] Sarler, B. and Kosec, G. Local RBF collocation method for Darcy flow.
2008, Computer Modeling in Eng.& Sciences, Vol. 25, pp. 197–207.

[11] Erhart, K., Gerace, S., Divo, E., and Kassab, A.J. An RBF interpolated
generalized finite difference Meshless method for compressible turbulent
flows. ASME IMECE 2009. IMECE2009-11452.

[12] Batchelor, G.K. An Introduction to Fluid Dynamics. Caimbridge, UK,
Caimbridge University Press, 2000.

[13] Osher, S. and Sethian, J. Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations. 1988, Journal
of Computational Physics, Vol. 79, pp. 12–49.

[14] Fox, G.C. A review of automatic load balancing and decomposition
methods for the hypercube. 1988, Inst. for Math and Its Applications,
Vol. 13, p. 63.

22 Boundary Elements and Other Mesh Reduction Methods XXXV

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press

–

