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Abstract

The set of partial differential equations governing the motion of viscous fluid is
known as nonlinear Navier–Stokes equations. This equation system is generally
considered to be the fundamental description for all laminar as well as turbulent
flows. The occurrence of small scale structures in turbulent flows prevents a direct
numerical simulation (DNS) of the governing Navier–Stokes equations. Therefore,
much attention is paid to large eddy simulation (LES), in which the large scale
turbulent structures are captured explicitly by the discretization model, while
the effect of the small structures, namely subgrid scales, are modelled with an
appropriate subgrid scale turbulent model. In the LES methodology the classical
Smagorinsky subgrid scale eddy-viscosity model with Van Driest damping closed
to the wall is most widely applied.

The paper deals with a LES numerical solver based on the velocity-vorticity
formulation of the filtered Navier–Stokes equations. The governing equations are
solved with a numerical solution algorithm, which is based on the boundary
element method (BEM). The single domain as well as domain decomposition
approaches are applied.
Keywords: Navier–Stokes equations, boundary element method, turbulence
simulation and modelling, 2D DNS and LES numerical investigation, turbulent
natural convection in enclosures.

1 Introduction

Natural convection in differentially heated enclosures is of importance in many
engineering applications. At the same time the natural convection in a square
cavity is also a very good and challenging benchmark example for numerical
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studies. The flow phenomena in the cavity are complicated specially when the
fluid flow is turbulent. In numerical terms, the geometry of the cavity is simple
and its boundary conditions are easy to determine. Therefore, natural convection in
closed cavities enjoys permanent long-lasting attention from the experimental and
numerical investigation aspects [1–3]. A numerical study of low-level turbulence
natural convection in an air filled vertical square cavity was performed. The
differentially heated cavity was of height H = 1 and width W = H . The hot and
cold walls of the cavity were isothermal at relative temperature Th = +0.5 and
Tc = −0.5 resulting in a characteristic Rayleigh number value equal toRa = 109.

The planar DNS and LES is used for velocity-vorticity formulation of the
incompressible Navier–Stokes equations with the Boussinesq approximation for
the buoyancy. The velocity-vorticity formulation in combination with the BEM is a
promising, stable and very accurate numerical model for the numerical solution of
general fluid flow problems [4–6]. Solution of the flow kinematics based on Biot–
Savart law provides boundary vorticity values, leading to a well posed coupled
vorticity transport equation. For the solution of domain velocity and vorticity
values based on Poisson velocity equation and vorticity kinetic transport equation,
respectively, a macro element model is applied [7].

2 Governing filtered flow equations

2.1 Primitive variables formulation

The governing equations for the filtered flow can be written in terms of effective
momentum diffusivity νef and thermal diffusivity aef , respectively, as follows

div�v = 0, (1)

ρo
D�v

Dt
= −rot(ηef �ω) + 2grad�v · gradηef + 2gradηef × �ω − gradp� + ρ�g , (2)

co
DT

Dt
= div

(
coaefgradT

)
+ ST , (3)

where the effective transport coefficient for the filtered flow equations are given by
the definitions, e.g. νef = ν + νs and aef = a + as, respectively. The modified
filtered pressure term p� represents the sum of the static pressure and the trace of
subgrid-scale stress tensor, respectively, such as

p� = p+
1

3
ρoτ

R
kk. (4)

The effective viscosity ηef and effective heat conductivity kef can be given as a
sum of a constant and variable part

ηef = ηefo + η̃ef , kef = kefo + k̃ef , (5)
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therefore the momentum and energy equations (2) and (3) can be written in
analogy to the basic conservation equations formulated for the constant material
properties

ρo
D�v

Dt
= −ηeforot�ω−gradp�+ρ�g+ �fm, co

DT

Dt
= kefo�T +ST +Sm

T , (6)

where the pseudo body force term �fm and pseudo heat source term Sm
T , are

introduced into the momentum and energy equations (6), respectively, capturing
the variable transport property effects, and given by expressions

fm
i = −eijk ∂ωk

∂xj
η̃ef + eijk

∂ηef
∂xj

ωk + 2
∂ηef
∂xj

∂vi
∂xj

, Sm
T =

∂

∂xj

(
k̃ef

∂T

∂xj

)
.

(7)

2.2 Velocity-vorticity filtered flow formulation

With the filtered vorticity vector ωi representing the curl of the velocity field vi the
fluid motion computation scheme is partitioned into its kinematics, given by the
elliptic filtered velocity vector equation

∂2vi
∂xj∂xj

+ eijk
∂ωk

∂xj
= 0 , (8)

or in its parabolised false transient form

∂2vi
∂xj∂xj

− 1

α

∂vi
∂t

+ eijk
∂ωk

∂xj
= 0 , (9)

where α is a relaxation parameter, to increase the stability of the computation
scheme, and kinetics given by filtered vorticity transport equation, obtained as a
curl of the filtered momentum eq. (6), e.g., written for two-dimensional plane flow
case as the following scalar filtered vorticity statement

∂ω

∂t
+
∂vj ω

∂xj
= νefo

∂2ω

∂xj∂xj
− 1

ρo
eij
∂ρgi
∂xj

− 1

ρo
eij
∂fm

i

∂xj
. (10)

2.3 Subgrid-scale closure/modelling

One of the most popular Boussinesq eddy-viscosity subgrid closure model is due to
Smagorinsky, e.g. which correlates τRij to the large-scale strain-rate tensor ε̇ij [6,8]

τRij = −2ηsε̇ij +
1

3
ρoτ

R
kkδij . (11)

The subgrid viscosity νs can be expressed as

νs = (Csls)
2γ̇ and ls = � = (�Ω)1/3, (12)

where Cs is the Smagorinsky constant, ls is the length scale of the unresolved
flow, �Ω is the volume of the computational internal cell and γ̇ is the deformation
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velocity of the resolved flow ε̇ij . The correct distribution of Cs in the near wall
region is obtained by using so-called damping functions, e.g. the most often used
is the van Driest damping function

Cs = Cso (1− exp(−Reτ/25))2 . (13)

The subgrid-scale heat flux vjT , that appeared in eq. (6), can be modelled as simple
gradient diffusion hypothesis

vjT = − νs
Prt

∂T

∂xj
, (14)

where Prt is the turbulent Prandtl number.

3 Boundary-domain integral equations

The kinematics of plane motion is given by two scalar equations as follows [5]:

c (ξ) vi (ξ) +

∫
Γ

viq
�dΓ =

∫
Γ

∂vi
∂n

u�dΓ+ eij

∫
Γ

ωnju
�dΓ− eij

∫
Ω

ωq�j dΩ. (15)

where u� stands for the elliptic Laplace fundamental solution and q� is its normal
derivative, or in its parabolic formulation

c (ξ) vi (ξ, tF ) +

∫
Γ

viQ
�dΓ =

∫
Γ

∂vi
∂n

U�dΓ

+eij

∫
Γ

ωnjU
�dΓ− eij

∫
Ω

ωQ�
jdΩ +

∫
Ω

viF−1u
�dΩ, (16)

with u� stands now for the parabolic diffusion fundamental solution [9] and U�

represents its time integral over time increment.
Accounting for the compatibility and restriction conditions for velocity and

vorticity fields to eq. (15), the following boundary integral representation for the
general flow situation can be stated for the two-dimensional plane flow kinematic
case as follows

c (ξ) vi (ξ) +

∫
Γ

viq
�dΓ = eij

∫
Γ

vjq
�
t dΓ− eij

∫
Ω

ωq�j dΩ , (17)

known as Biot–Savart law. Using unique feature of global integral representation
for boundary vorticity values, the vector eq. (17) has to be written in its tangential
form.
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With the use of the linear parabolic diffusion operator the vorticity equation can
be given as:

c (ξ)ω (ξ, tF ) +

∫
Γ

ωQ�dΓ =
1

ηo

∫
Γ

(
ηo
∂ω

∂n
− ρovnω + ρgt

)
U�dΓ

+
1

ηo

∫
Ω

(
ρovjω + eij(ρgi + fm

i )
)
Q�

jdΩ +

∫
Ω

ωF−1u
�
F−1dΩ, (18)

where a constant variation of all field functions within the individual time
increment is assumed, e.g. the values at t = tF are considered for each time step,
where vn and gt are the normal velocity, and the tangential gravity, respectively,
e.g. vn = �v · �n, gt = �g · �t = −eijginj . The integral representation of the heat
energy equation can be formulated as

c (ξ)T (ξ, tF ) +

∫
Γ

TQ�dΓ =
1

ko

∫
Γ

(
ko
∂T

∂n
− covnT

)
U�dΓ

+
1

ko

∫
Ω

(covjT + Sm
T )Q�

jdΩ+

∫
Ω

TF−1u
�
F−1dΩ . (19)

4 Numerical aspects/iterative strategy

The main advantages of the Smagorinsky model are its simplicity and its stability.
Whether filtering is introduced or not, the LES equations with subgrid-scale
eddy viscosity model are solved numerically for the time evolution of the LES
field functions. This involves discretization in space and time, which introduces
differences between the differential equations and their numerical equivalent. The
solution iterative strategy is to solve for large scale velocity �v and vorticity �ω field
functions and then to compute subgrid-scale eddy viscosity until convergence,
repeating the iterative process if needed. The solution scheme is as follows:

1. Solve the filtered Navier–Stokes LES equations
1.1 Update subgrid-scale eddy viscosity νs

2. Check convergence for �ω. If not, go to 1.

5 Onset of unsteady turbulent natural convection in an
differentially heated square cavity

We consider a square cavity of height H = 1 and width W = H , filled with
a Newtonian viscous fluid. It is submitted to a temperature difference �T =
Th − Tc > 0 at the vertical walls, with uniform temperatures Th = 0.5 and
Tc = −0.5, respectively, while the top and bottom walls are adiabatic, Fig. 1.
A non-uniform symmetric mesh of M = 80× 80 elements is used, with the ratio
R = 10 between the largest and the smallest boundary element. The mesh features
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Figure 1: Boundary and initial conditions for the simulation of natural convection
flow in a square cavity; the left wall is heated and kept at uniform
temperature Th = 0.5, while the right wall is cooled and kept at
Tc = −0.5. × denotes location of points from where time traces and
phase portraits are extracted.

320 boundary elements, 6400 boundary nodes and the total number of nodes is
25921. Convergence criterion was selected as ε = 10−6. The time-dependent
analysis was performed by running the simulation from the initial state with a
time step value of �t = 1× 10−6.

Turbulent natural convection in a differently heated air-filled square cavity
with adiabatic horizontal walls is investigated by direct numerical simulation
DNS and large eddy simulation LES numerical integration of the unsteady two-
dimensional governing equations. In order to approach chaotic flows which
exhibits randomness in space as well as in time, simulations for Rayleigh number
value Ra = 1 × 109 and Prandtl number value Pr = 0.71 are performed. It is
necessary to integrate the unsteady governing equations long enough in time so
that the transient effects have died out and the asymptotic behaviour is reached.

Instantaneous temperature and vorticity fields obtained by DNS simulation are
shown in Fig. 2 and Fig. 3 for Rayleigh number value Ra = 1 × 109. Filtered
temperature and vorticity fields obtained by LES simulation are shown in Fig. 4
and Fig. 5 for Rayleigh number value Ra = 1 × 109. Examining the flow fields
gives an impression of wide variety of scales in the flow fields. Fig. 6 shows
the oscillatory nature of temperature versus time for DNS and LES damping
results. The transition from oscillatory to chaotic flow circumstances can also be
observed in temperature-vorticity phase portraits, Fig. 7. Sajjadi et al. [10] used
the lattice Boltzmann method to simulate turbulent natural convection with LES.
They reported that the average Nusselt number at Ra = 109 is Nu = 58.1. We
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plot the average Nusselt number time series of our results in Fig. 8. The time series
of our results is still too short and the flow did not reach a self similar state, where
a time average value could be calculated.

Figure 2: DNS instantaneous temperature fields for Ra = 1× 109 at t = 8 · 10−4

(left), t = 16 · 10−4 (middle), t = 24 · 10−4 (right).

Figure 3: DNS instantaneous vorticity fields for Ra = 1 × 109 at t = 8 · 10−4

(left), t = 16 · 10−4 (middle), t = 24 · 10−4 (right).

Figure 4: LES filtered temperature fields for Ra = 1 × 109 at t = 8 · 10−4 (left),
t = 10 · 10−4 (middle), t = 12 · 10−4 (right).
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Figure 5: LES filtered vorticity fields for Ra = 1 × 109 at t = 8 · 10−4 (left),
t = 10 · 10−4 (middle), t = 12 · 10−4 (right).
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Figure 6: Time traces of temperature for Ra = 1 × 109 for DNS (left) and LES
(right) at two specific locations in the bottom left corner of the cavity.
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Figure 7: Temperature-vorticity time series phase portraits for Ra = 1 × 109 for
DNS (left) and LES (right).
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Figure 8: Average heat flux through the vertical wall expressed in term of the
Nusselt number,Ra = 1× 109.

6 Conclusions

The velocity-vorticity formulation of DNS and LES based BEM presented in this
paper shows good potential for solving general turbulent transport phenomena.
Relatively dense meshes can be used by the use of domain decomposition
technique. False transient approach to kinematics considerably increases the
stability of the numerical algorithm at high Rayleigh number values. To increase
the accuracy and the stability of the developed numerical model higher order
time integration schemes will be introduced, e.g. linear approximation of all field
functions over each individual time step.

In this work a numerical procedure based on the boundary element method for
the simulation of unsteady turbulent buoyancy-driven two-dimensional fluid flow
in a differentially heated air-filled cavity is investigated. The flow circumstances
for different Rayleigh number values ofRa = 1×109 is studied. Relatively coarse
nonuniform meshes are used in the numerical model. The transition to turbulent
flow was investigated by studying time series plots, power spectra and vorticity-
temperature phase diagrams. Rather large fluctuations are observed in the cavity
corners. With increasing Ra the cavity core becomes deorganised and chaotic.
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