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ABSTRACT 
The paper focuses on deriving a local variant of the method of fundamental solutions (MFS) for the 
case of Stokes flow. Compared to the global and local basis variants, the local with global basis one 
leads to a sparse characteristic matrix as in fully localized variants but with a narrower system of 
equations and thus makes the solution of especially large-scale problems more efficient. It is also 
essential to keep the condition number of the characteristic matrix within reasonable bounds and 
remove the solution dependency on fictitious sources. A combination of MFS and finite collocation 
approach was used for the localization with a globally defined Stokeslet fundamental solution. The 
results of the particular local variant were compared on several examples, and the dependence of the 
solution on the density of the point network and the dimensions of the stencil used were also tested in 
the paper. 
Keywords:  method of fundamental solutions, biharmonic equation, Stoke’s flow. 

1  INTRODUCTION 
The linear case within the broader Navier–Stokes equations framework, which describes 
fluid motion, is called Stokes flow. In the context of former conditions, one can assume that 
the fluid is considered incompressible, and the flow velocity is very slow. 
     There are various approaches to solving the Stokes flow problem numerically. One such 
approach, the vorticity-stream function formulation, leverages the relationship in two 
dimensions between vorticity and the Laplacian of the stream function [1]. By eliminating 
vorticity, one obtains the biharmonic equation for the stream function, and the Stokes flow is 
solved in the form of the biharmonic equation. 
     Unlike traditional methods, reliant on predefined meshes, meshless numerical methods 
use scattered data points to approximate solutions in a continuous domain. These methods 
have gained popularity due to their effectiveness in handling complex geometries, adaptive 
refinement, and straightforward implementation. Over the past two decades, several meshless 
methods have emerged, including the Trefftz-like approaches represented by the method of 
fundamental solutions (MFS) [2]–[5], singular boundary method (SBM) [6] and boundary 
knots method (BKM) [7]. SBM, like MFS, employs the PDE’s fundamental solution as an 
interpolation function, but it faces challenges related to singularities in the interpolation 
matrix. Conversely, the boundary knot method uses the general PDE solution as an 
interpolation function, resulting in regular diagonal terms. However, when dealing with a 
general PDE solution, the characteristic matrix may encounter issues related to its ill-
conditioned character. Finding suitable general solutions for Laplace and biharmonic 
equations can be complex, and finding the proper technique to evaluate origin intensity 
factors in the case of SBM is also challenging. One of the possibilities for overcoming the 
mentioned issues is to use the fundamental solutions defined globally with the singular 
sources placed outside the application domain as in MFS and use them as a base for all local 
domains. 

Boundary Elements and Other Mesh Reduction Methods XLVI  147

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 135, © 2023 WIT Press

doi:10.2495/BE460121



     Recent attention has turned towards localized variations of the Trefftz-like method, 
aiming to enhance matrix conditioning. These variants adopt different localization 
techniques, primarily centred on applying the appropriate method within limited 
neighbourhoods of specific points. The side effect of the localized technique is the lowering 
of the fundamental solution source position influence on the final solution. 
     The MFS localized forms [3], [4] adopt mainly the local subdomain concept using the 
internal nodes with the fictitious boundary to evaluate the solution in the solution centre; the 
present method forms the local model using the convex hull of the local domain boundary 
nodes and the global sources divided regularly around the global domain. On the other hand, 
a localized numerical solution governed by a biharmonic equation (stream function form of 
the Stokes equation) is somewhat tricky because of the need to impose the two boundary 
conditions. A biharmonic problem is solved using the localized method of fundamental 
solutions presented in Fan et al. [5]. However, this formulation [5] uses the concept of a 
support domain with internal nodes and the problematic part caused by the imposition of the 
Neumann boundary conditions results in the overdetermined linear system with velocities in 
the direction of local model domains – the present formulation results in the regular linear 
system with the velocities as the part of the solution. 
     The localization principle is universally applicable, especially for methods emphasizing 
boundary points like the singular boundary method (SBM) or method of fundamental 
solutions (MFS). This principle defines a local solution region based solely on boundary 
points [8]. It mainly benefits the application of MFS, leading to the development of the local 
method of fundamental solutions (LMFS). In LMFS, MFS is used for local PDE solutions 
within overlapping subdomains of interior points, and a global sparse system of linear 
equations is assembled to determine the unknown values of the area. 
     The initial sections of this article present the description of the LMFS principle, along 
with their application to solving the two-dimensional Stokes flow problem. Subsequent 
sections present the results of solving the lid-driven cavity problem. 

2  BASIC FLOW EQUATIONS 
When the influence of inertial forces is much weaker than viscous forces and pressure 
gradient, one can label the flow as Stokes flow. Then, it is possible to describe 2D Stokes 
flow using the momentum (1) and continuity (2) as follows: 

 
డ௣

డ௫೔
െ ∆𝑢௜ ൌ 0, (1) 

 
డ௨೔

డ௫೔
ൌ 0. (2) 

     In these equations, 𝑢𝑖 stands for the 𝑖th velocity component, and p represents pressure. 
Expressing the momentum and continuity equations relying on the concepts of vorticity ω 
and stream function Ψ (for more detail, see Fan et al. [9]) provides an alternative formulation 
of the Stokes equations as follows: 

 ∆𝜔 ൌ 0, (3) 

  ∆𝛹 ൌ െ𝜔. (4) 

     Cancelling the vorticity term from eqn (4) results in the biharmonic form of the Stokes 
equation. 

 ∆ଶ𝛹 ൌ 0. (5) 
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     For boundary value problems governed by biharmonic PDE, the two types of boundary 
conditions should be specified simultaneously along the boundary Γ.  

 𝛹ሺ𝐱ሻ ൌ 0         𝐱 ∈ 𝛤, (6) 

 
డఅሺ𝐱ሻ

డ୶೔
ൌ ሺെ1ሻሺ௜ାଵሻ𝑢௜଴. (7) 

     In this context, 𝑢𝑖0 represents the prescribed velocity components at the boundary 𝛤. 

3  IMPLEMENTATION OF THE LOCALIZED MFS 
The study aimed to solve eqn (5) while considering boundary conditions (6) and (7) within a 
two-dimensional domain 𝛺 and its boundary 𝛤. We achieved this by creating a set of internal 
and boundary points that covered the entire global computational domain [10]. Near each 
internal node, we defined a small local domain (see Fig. 1). Within these domains, we applied 
the method of the fundamental solutions to solve the biharmonic equation, considering the 
unknown values at the local domain boundary, which are marked as ‘solution centres’. The 
specified global boundary condition is applied if a solution centre is on the global boundary 
(6) and (7). 
 

 

Figure 1:   Regular local subdomains. (a) Eight solution centres; and (b) Sixteen solution 
centres on the local boundary. 

     For solving eqn (5) within each local domain Ω 𝛺𝑘, we utilized the method of the 
fundamental solutions (MFS). In the evaluation of the stream function 𝜓 and 𝜕𝜓∕𝜕𝐧, we 
employed fundamental solutions of Laplace and the biharmonic operator [11] in the form: 

 𝛹ሺ𝐱௜ሻ ൌ ∑ 𝐺୆൫𝑟௜௝൯α௝ ൅ 𝐺௅൫𝑟௜௝൯β௝
௡
௝ୀଵ , (8) 

 
డఅሺ𝐱೔ሻ

డ𝐧
ൌ ∑

డீా൫௥೔ೕ൯

డ𝐧
α௝ ൅

డீಽ൫௥೔ೕ൯

డ𝐧
௡
௝ୀଵ β௝. (9) 
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     In these equations, n is the number of solution centres, and GL and GB were the 
fundamental solutions for Laplace and the biharmonic equation, respectively, which are 
defined as: 

 𝐺஻൫𝑟௜௝൯ ൌ െ
ଵ

଼గ
𝑟௜௝

ଶln൫𝑟௜௝൯, (10) 

 𝐺௅൫𝑟௜௝൯ ൌ െ
ଵ

ଶగ
ln൫𝑟௜௝൯, (11) 

where 𝑟௜௝ ൌ ฮ𝐱௜ െ 𝐱௜
௙ฮ. To formulate the MFS solution within the local domain, we set up a 

system of linear equations: 

 ∑ 𝐴௜௝𝑎௝
ଶ௡
௝ୀଵ ൌ 𝑑௜, 𝑖 ൌ 1, . . . , 2𝑛. (12) 

     This system’s structure depended on the local domain’s number of solution centres n. 
Matrix A and vectors a and d took the following form: 

 𝐀 ൌ ൥
𝐺୆൫𝑟௖௝൯ 𝐺௅൫𝑟௖௝൯
డீా൫௥೎ೕ൯

డ𝐧

డீಽ൫௥೎ೕ൯

డ𝐧

൩ ;  𝐚 ൌ ൜
α௝

β௝
ൠ ;  𝐝 ൌ ൝

𝛹௝
డఅೕ

డ𝐧

ൡ. (13) 

     The values aj in eqn (12) represented interpolation coefficients α and β for the given local 
domain. The vector di on the right side of eqn (12) contained the unknown values of Ψ and 
∂Ψ/∂n at the solution centres on the local domain’s boundary. The values of Ψ and ∂Ψ/∂n at 
the local domain’s central point could be evaluated as follows: 

 𝛹௜ሺ𝐱௖ሻ ൌ ∑ 𝐺୆൫𝑟௖௝൯α௝ ൅ 𝐺௅൫𝑟௖௝൯β௝
௡
௝ୀଵ , (14) 

 
డఅ೔ሺ𝐱೎ሻ

డ𝐧
ൌ ∑

డீా൫௥೎ೕ൯

డ𝐧
α௝ ൅

డீಽ൫௥೎ೕ൯

డ𝐧
௡
௝ୀଵ β௝. (15) 

 
     Here, rjc is the radial distance between the central point xc and solution centre j. Eqn (12) 
could be expressed in matrix notation as: 

 𝐝 ൌ 𝐆௖𝐚. (16) 

     From eqn (12), we could express the vector a as: 

 𝐚 ൌ ሾ𝐀ሿିଵ𝐝. (17) 

     If we substituted this expression into eqn (13), we obtained: 

 𝐛 ൌ 𝐆௖ሾ𝐀ሿିଵ𝐝 ൌ 𝐖௖𝐝. (18) 

     In this equation, Wc represented a stencil weight vector [12] that could be used to construct 
the global system of equations. This system, characterized by sparsity, could be defined as: 

 𝛹௞ െ ∑ 𝑊௝
௞𝛹௝

௡
௝ୀଵ െ ∑ 𝑊௝

௞ డఅೕ

డ௫೔
𝑛௜௝

ଶ௡
௝ୀ௡ାଵ ൌ ∑ 𝑊௟

௞𝛹଴௟
௠
௟ୀଵ , (19) 

 
డఅೖ

డ௫೔
െ ∑

డௐೕ
ೖ

డ௫೔
𝛹௝

௡
௝ୀଵ െ ∑

డௐೕ
ೖ

డ௫೔

డఅೕ

డ௫೔
𝑛௜௝ ଶ௡

௝ୀ௡ାଵ ൌ ∑ 𝑊௟
௞𝐵௜௠

ଶ௠
௟ୀ௠ାଵ . (20) 

     In this representation, N was the number of internal points, n was the number of solution 
centres, m referred to the number of boundary centres in the kth local domain. This process 
resulted in forming a system of 3N sparse linear equations, which could be solved to obtain 
the stream function values and velocities at internal nodes. 
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4  STOKES FLOW – NUMERICAL EXAMPLE 
The numerical example is a well-known one used to study Stokes flow. The geometrical 
conditions are formed by a square box filled with a thick liquid. Three sides of this box are 
still, meaning they do not move (the walls on the sides and the bottom). However, the top 
side, like a lid, can move. One can see the model configuration in Fig. 2, where we also show 
how the edges and boundary conditions are set. 
 

 

Figure 2:  Lid-driven cavity, geometry, and boundary conditions. 

     In this case, we make the lid move at a steady speed, represented as u1 = 1. This motion 
also makes the liquid inside the box move, especially close to the walls. This creates swirling 
patterns and flows inside the box because the liquid sticks to the walls. 
     This numerical experiment is often used as a test problem when they want to try out new 
computer simulations or experiments [13]. It is a good choice because it is simple, and we 
know exactly what should happen. This helps to understand how the liquid sticks to the walls, 
how swirling happens, and when the flow separates from the walls.  
     In the present study the solution is obtained using three sets of points: one with a grid of 
21 × 21 points, another with 41 × 41 points, and the last with 81 × 81 points. Fig. 3 shows 
the results as lines and arrows representing how the liquid moves at different places in the 
square cavity. 
     However, there is no exact solution for this problem in a closed form. So, we compare our 
results to what other researchers have found using computer codes, like the work in Botella 
and Peyret [13] and Mužík and Bulko [14]. Table 1 compares the highest and lowest values 
of scalar stream function ψ" with what they found in Botella and Peyret [13]. Fig. 4 shows 
the velocity profiles compared with Song et al. [15]. 
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Figure 3:  Lid-driven cavity. (a) Contours of 𝜓; and (b) Velocity vectors. 

Table 1:  Lid-driven cavity, comparison of 𝜓min and 𝜓max. 

Mesh 𝜓min 𝜓max 
21 × 21 −9.9788 × 10−2 0 

41 × 41 −9.9961 × 10−2 1.7403 × 10−6 

81 × 81 −1.0007 × 10−1 2.2261 × 10−6 

Botella and Peyret [13] −1.0007 × 10−1 2.2276 × 10−6 
 
 

 

Figure 4:    (a) Velocity profile (u) on the centre line at x = 0.5; and (b) Velocity profile (v) 
on the centre line at  y = 0.5. 
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5  CONCLUSIONS 
This paper introduces a localized method of fundamental solutions for solving the problems 
related to Stokes flow. The advantage of this localized method of fundamental solutions is 
that it effectively manages the condition number of the global characteristic matrix, ensuring 
it remains reasonably well-conditioned. This improvement eliminates one of the primary 
shortcomings associated with this method. As a result, the overall matrix becomes sparse, 
maintains good conditioning, and can be solved using standard software tools. 
     As we continue to advance this method, a natural progression will be to expand its 
application to three-dimensional tasks or problems that involve non-linear behaviour. 
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