
KERNEL-BASED METHODS FOR SOLVING SURFACE
PARTIAL DIFFERENTIAL EQUATIONS

MENG CHEN1 & LEEVAN LING2

1Department of Mathematics, Nanchang University, China
2Department of Mathematics, Hong Kong Baptist University, Hong Kong

ABSTRACT
A convergence analysis technique in our previous work is extended to various theoretically proven
convergent kernel-based least-squares collocation methods for surface elliptic equation, projection
methods for surface elliptic equation, and recently for surface parabolic equations. These partial
differential equations (PDEs) on surfaces closely resemble their Euclidean counterparts, except that
the problem domains change from bulk regions with a flat geometry to some manifolds, on which
curvatures plays an important role in the physical processes. We do not focus on proofs in this paper,
but on implementation details instead. First, we present an embedding formulation to solve a surface
PDE in a narrow-band domain containing the surface. Next, we present another extrinsic projection
formulation that works solely on data points on the surface. Lastly, we solve surface diffusion problem
using kernel and the method of lines.
Keywords: convergence estimate, least-squares, Kansa method, partial differential equations on
manifolds, surface diffusion.

1 INTRODUCTION
All theories we review in this paper require Sobolev space-reproducing kernel Φ : Rd ×
Rd → R whose Fourier transform decays like

c(1 + ‖ω‖22)−τ ≤ Φ̂(ω) ≤ C(1 + ‖ω‖22)−τ for all ω ∈ Rd,

for some C ≥ c > 0 and smoothness order τ > d/2, which is an important parameter in
convergence rate. This includes the Wendland compactly supported kernels [1] and the
Sobolev kernel with smoothness order τ

Φτ (x, z) := ‖x− z‖τ−d/2
`2(Rd)

Kτ−d/2
(
‖x− z‖`2(Rd)

)
for x, z ∈ Rd, (1)

where K Bessel functions of the second kind. Other commonly used kernels, such as,
multiquadrics

Φ(x, z) =
√
‖x− z‖2

`2(Rd)
+ 1 for x, z ∈ Rd,

and Gaussian
Φ(x, z) = exp

(
− ‖x− z‖2`2(Rd)

)
for x, z ∈ Rd,

remain useful in practice, but were not covered by the convergence theories below.
In Section 2, we will describe the well-known Kansa method [2] in order to introduce our

notations to readers. In Sections 3 and 4, we will talk about two Kansa-type methods that can
solve time-independent partial differential equations on surfaces. The last topic in Section 5
is to extend the projection method in Section 4 to solve time-dependent PDEs.
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2 KANSA METHOD: A KERNEL BASED COLLOCATION METHOD
Let Ω be some nice (Ω is Lipschitz continuous and satisfies an interior cone condition.) bulk
domain with a piecewise smooth boundary ∂Ω. We consider a second-order elliptic equation{

Lu = f in Ω,
u = g on ∂Ω, (2)

where L is a strongly elliptic operator with coefficients belonging to W τ
∞(Ω), i.e., PDE

coefficient functions in

Lu(x) :=
d∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi
u(x)

)
+

d∑
j=1

∂

∂xj
(
bj(x)u(x)

)
+

d∑
i=1

ci(x)
∂

∂xi
u(x) + d(x)u(x),

(3)

must have τ -bounded derivatives to go along with kernels with smoothness order τ and yield
high order of convergence.

Let Z = {z1, . . . , znZ} ⊂ Ω be a set of nZ trial centers (a.k.a., RBF centers). We can
compute the fill distance of Z by

hZ := sup
ζ∈Ω

min
z∈Z
‖z − ζ‖`2(Rd), (4)

and separation distance of Z by

qZ :=
1
2

inf
zi 6=zj∈Z

dist(zi, zj). (5)

For any convergent method, we want the error to go to zero as hZ → 0. For numerical
stability, we want to keep qZ away from zero. One can use the mesh ratio ρZ = hZ/qZ ≥ 1
to measure how “uniform” a given set of points is. We assume that Z is quasi-uniform, that
is, the sequence of mesh ratios is bounded by a constant as we refine Z with increasing nZ .
We look for numerical approximation in the form of

u(x) =
nZ∑
j=1

λjΦ(x, zj) for x ∈ Rd. (6)

As long as τ ≥ 2, then we can apply the differential operator L analytically to the x-variable
of Φ(x, z) to yield ΦL(x, z). Now, let X = {x1, . . . , xnX} ⊂ Ω and Y = {y1, . . . , ynY } ⊂
∂Ω be sets of nX and nY quasi-uniform collocation points in the interior and on the
boundary that are dense enough with respect to Z with nX + nY > nZ . We are now ready to
“collocate”, that is, we put the ansatz (6) into (2) and then evaluate the resulting equations at
all points inX and Y . The result is an (nX + nY )× nZ overdetermined system of equations:

ΦL(x1, z1) · · · ΦL(x1, znZ )
...

. . .
...

ΦL(xnX , z1) · · · ΦL(xnX , znZ )
ωΦ(y1, z1) · · · ωΦ(y1, znZ )

...
. . .

...
ωΦ(ynY , z1) · · · ωΦ(ynY , znZ )


 λ1

...
λnZ

 =



f(x1)
...

f(xnX )
ω g(y1)

...
ω g(ynY )


,
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where ΦL(xi, zj) = LΦ(x, zj)|x=xi , for some constant weight ω = hd−4
Y h−dX . If we allow

functions and kernels to take set of points as input, we can use a more compact notation[
ΦL(X,Z)
ωΦ(Y,Z)

]
λ =

[
f(X)
ω g(Y )

]
. (7)

Let λLS be the least-squares solution to (7), and with (6), the numerical approximation uLS to
the solution u∗ ∈ Hτ (Ω) of the PDE (2). Then, by [3, Thm. 2.6] (with θ = 2, ν = 2, d ≤ 3),
we know the following estimate holds up to R3

‖uLS − u∗‖H2(Ω) ≤ Chτ−2
Z ‖u∗‖Hτ (Ω). (8)

if we use kernels with smoothness τ > 3 + d/2.

3 EMBEDDED KANSA METHOD FOR SURFACE PDES
We move from bulk domain Ω to some smooth (S is a connected and complete Riemannian
manifold of Rd such that it is of class Cτ+3/2 and satisfies the assumptions on bounded
geometry and boundary regularity.) and closed surface S, say, a sphere or an ellipsoid in R3.
We consider general second order strongly elliptic partial differential equations

LSu := (−a∆S + b ·∇S + c)u = f on S ⊂ Rd, (9)

where the surface differential operator LS has W
τ−5/2
∞ (S)-bounded coefficients, i.e.,

(τ − 5/2)-bounded derivatives as in the previous section. To define the surface Laplacian
∆S , a.k.a. Laplace–Beltrami operator, we need the normal vector n = n(p) at all p ∈ S. For
the unit sphere, for example, n = [x, y, z]T . Then, the surface gradient ∇S and the surface
Laplacian ∆S can be defined as

∇S := (I − nnT )∇ and ∆S := ∇S ·∇S , (10)

using the standard Euclidean gradient∇ and Laplacian ∆ operators for Rd. We want to avoid
dealing with (10) by embedding the surface PDE (9) into a bulk domain. Consider a similar-
looking PDE

Lw := (−acp∆ + bcp ·∇+ ccp)w = fcp in Ωδ ⊂ Rd, (11)

in some narrow-band (bulk) domain by

Ωδ = {x ∈ Rd : ‖x− ξ‖`2(Rd) < δ for some ξ ∈ S}, (12)

with coefficient acp = a ◦ cp where cp(x) = arg infξ∈S ‖ξ − x‖`2(Rd) is the closest-point
mapping [4]. For the unit sphere S, we have cp([3, 0, 0]T ) = [1, 0, 0]T , which is the point
on S closest to the input. Also, cp([0, 0, 0]T ) is undefined, meaning that we must take δ < 1
in (12). For more complicated surfaces, the cp search can be done numerically. The other
coefficient functions are defined by the same way.

The fact, without providing details, is that if w satisfies (11) and has a constant-along-
normal (CAN) property, i.e., w(p) = w(p± εn(p)) for all p ∈ S and ε ≤ δ, then restricting
w on S solves the surface PDE (9), i.e., u = w|S .

Note that (9) is well-posed, but (11) is not, due to the missing boundary conditions. The
discussion above is valid because we assume w is CAN, which can be made into embedding
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conditions to make (11) well-posed. There are two options:

(EC-I) ∂nu := nT∇u = 0 = ∂
(2)
n u := nTJ(∇u)n for all p ∈ S,

(EC-II) u(p) = u(cp(p)) for all p ∈ ∂Ω.
(13)

If the bandwidth δ in (12) is small enough, (EC-II) is a good finite difference approximation
to (EC-I). The embedded PDE (11) in Ωδ with either one of the embedding conditions in (13)
is now well-posed and can be solved by the least-squares Kansa method in Section 2. Since
the problem domain is now Ωδ , we chose quasi-uniform sets of RBF centers Z ⊂ Ωδ but
sufficiently dense collocation points X ⊂ S with hX ≤ δ. Orthogonal gradient method [5] is
a popular way to generate X , in which data points are aligned along the normal of S that can
speed up the implementation of EC-II.

The corresponding matrix systems for EC-I and EC-II are ΦL(X,Z)
Φ∂n(X,Z)
Φ
∂
(2)
n

(X,Z)

λ =

 f(X)
0(X)
0(X)

 , (14)

and [
ΦL(X,Z)

Φ
(
Z,Z

)
− Φ

(
cp(Z), Z

) ]λ =
[
f(X)
0(Z)

]
, (15)

of sizes 3nX × nZ and (nX + nZ)× nZ , respectively, where 0 stands for the zero function.
The convergent embedded Kansa method indeed requires both embedding conditions in (13)
in theory. The matrix system is in the form of (14) with EC-I appended with the second row
of (15) for EC-II.

Here, we present a simplified version of convergence result, which is more stable
numerically. Let λLS be the least-squares solution to the EC-I solution of (14), and with (6),
the numerical approximation uLS to the solution u∗S ∈ Hτ−1/2(S) of the surface PDE (9).
Then, by [6, Thm. 4.1] (with m = τ − 1/2, k = 2, δ = hX , ε↗∞), the following estimate
holds

‖uLS − u∗S‖H2(S) ≤ C
(
h
τ−5/2−d/2
Z + h

1/2
X h

τ−2−d/2
Z

)
‖u∗S‖Hτ−1/2(S), (16)

provided the smoothness order of kernel is (τ − 1/2) > d/2 + 7/2. All the 0.5-order
appeared in this paragraph are due to the trace theorem when our analysis goes between
S and Ωδ . We remark that it is common to observe higher than predicted in (16) rate of
convergence numerically, since S used in numerical experiments are usually a lot nicer than
the theoretical assumptions.

4 PROJECTION KANSA METHOD FOR SURFACE PDES
Let us consider the same surface PDE (9). In contrast to the embedded Kansa method, we
want to work directly on the surface PDE. Thus, we also want on-surface RBF centers Z ⊂ S
in this section. As usual, sets of collocation points X ⊂ S have to be sufficiently dense with
respect toZ. With the numerical expansion in the form of (6), collocating the single governing
equation in (9) yields an nX × nZ overdetermined simplest-ever matrix system[

ΦLS (X,Z)
]
λ =

[
f(X)

]
. (17)

Let λLS be the least-squares solution to (17), and with (6), the numerical approximation
uLS to the solution u∗S ∈ Hτ−1/2(S) of the surface PDE (9). Then, by [7, Thm. 1.1] (with
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m = τ − 1/2, k = 2), we have a much tidier error estimate

‖uLS − u∗‖H2(S) ≤ Ch
τ−2−d/2
Z ‖u∗‖Hτ−1/2(S) (18)

given τ − 1/2− 1/2 ≥ d5/2 + d/2e. The price for all these simplicities is the trouble in
evaluating the function ΦLS (·, z).

When we have some parametric information about S, it is possible to compute ΦLS
analytically. Take the unit sphere as an example again. The projection matrix function P
is given by

P(p) =
[
P1,P2,P3

]
(p) :=

[
I − nnT

]
(p)

=

−x2 + 1 −xy −xz
−xy −y2 + 1 −yz
−xz −yz −z2 + 1

 for p = (x, y, z) ∈ S.

Then, we can use the definitions in (10) to compute surface gradient and surface Laplacian
of any smooth function. Note that the latter involves differentiating normal vectors. Carrying
out all calculation symbolically yields, for example,

LS = ∆S − 1 ·∇S

=
(

(x− 1)2 + x(y + z)− 2
) ∂
∂x

+
(

(y − 1)2 + y(x+ z)− 2
) ∂
∂y

+
(

(z − 1)2 + z(x+ y)− 2
) ∂
∂z

+
(
− x2 + 1

) ∂2

∂x2
+
(
− y2 + 1

) ∂2

∂y2

+
(
− z2 + 1

) ∂2

∂z2
− 2xy

∂2

∂x∂y
− 2xz

∂2

∂x∂z
− 2yz

∂2

∂y∂z
,

that can be used to compute ΦLS for the sake of collocation. Due to the large amount of
exact analytic information in this method, this analytic-projection Kansa method is orders of
magnitude more accurate than the embedded Kansa method in Section 3.

When we know S implicitly by some oriented point cloud Z with normal vectors n(Z),
we can employ a pseudospectral approach [8] to approximate the gradient of some function
u based on its (known or unknown) function values at Z. Using the nodal values u(Z), we
can define the interpolant of u in the trial space UZ := Span{Φ(·, zi)

∣∣ zi ∈ Z} as

IZu(·) = [Φ(·, Z)][Φ(Z,Z)]−1u(Z) on S. (19)

The surface gradient of u can then be approximated by

∇Su ≈ ∇S(IZu)

=

P
T
1 ∇
...
PTd ∇

 (IZu) =

(PT1 ∇)Φ(·, Z)[Φ(Z,Z)]−1

...
(PTd ∇)Φ(·, Z)[Φ(Z,Z)]−1

u(Z) =:

G1(·, Z)
...

Gd(·, Z)

u(Z),

where Gk(·, Z) : S → R1×nZ is a row-vector function. To avoid any confusion in notations,
the operator (PT1 ∇) = [−x2 + 1,−xy,−xz] · [∂x, ∂y, ∂z] on the unit sphere and

(PT1 ∇)Φ(·, Z) =
[
(PT1 ∇)Φ(·, z1), . . . , (PT1 ∇)Φ(·, znZ )

]
,

Boundary Elements and other Mesh Reduction Methods XLV  111

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 134, © 2022 WIT Press



is a row-vector function of length nZ .
To avoid differentiating normal vectors, we can repeatedly apply the same pseudospectral

idea to each component of∇Su in order to approximate the surface Laplacian as

∆Su ≈ ∇S · ~IZ
(
∇S(IZu)

)
=

d∑
k=1

Gk(·, Z)Gk(Z,Z)u(Z) on S.

The equality above is not that trivial and we refer readers to the original article for details.
In terms of numerical accuracy, this pseudospectral-projection Kansa method is the second
runner up among the three. Readers are referred to the numerical examples in Chen and
Ling [7].

5 KANSA METHOD OF LINES FOR SURFACE DIFFUSION
Consider surface diffusion problem

∂

∂t
u(x, t) + ∆Su(x, t) = f(x, t) for (x, t) ∈ S × [0, T ] (20)

u(x, 0) = g(x) for x ∈ S. (21)

One can discretize in time first by some finite difference scheme to yield a sequence of surface 
elliptic PDEs, that can be solved by methods in Sections 3 and 4 or other localized meshless 
finite difference methods [9], [10].

In this section, we focus on the method of lines (MoL), in which we discretize in space
first to (hopefully) yield ordinary differential equation (ODE) systems. Let us follow the
standard steps in Kansa methods using on-surface RBF centers Z ⊂ S and collocation points
X ⊂ S. Putting the numerical expansion (6) into the governing eqn (20) and collocating at
X yields

Φ(X,Z)
∂

∂t
λ(t) + (∆SΦ)(X,Z)λ(t) = f(X, t) for t ∈ [0, T ]. (22)

As long as nX > nZ , this is a differential algebraic equation (DAE) but not ODE. In Chen
et al. [11], we show that the fully-discretized continuous-least-squares DAE solution can be
approximated up to arbitrarily high order by the ODE solution

λ̇(t) = −Φ(X,Z)†(∆SΦ)(X,Z)︸ ︷︷ ︸
ODE matrix

λ(t) + Φ(X,Z)†f(X, t) for t ∈ [0, T ], (23)

where † denotes the pseduoinverse operator. Although (23) looks like the normal equation
of (22), we emphasise that this intuition is not what’s going on in the theoretical analysis.
We can use (21) to obtain an initial condition λ(0), say by interpolation or by a regularized
least-squares approximation in Chen et al. [11, Sect. 3.4]. Let λLS(t) be the solution to (23)
subject to some O(hτ−2

Z )-convergent initial condition λLS(0), then, by [11, Thm. 3.6 and
Cor. 4.2] (with m = τ − 1/2, dS = d− 1), the following estimate holds

E(uLS − u∗) ≤ C
(
h2τ−4−d
Z

(
‖u̇∗‖2Hτ−5/2(S) + ‖u∗‖2Hτ−1/2(S)

)
(24)

+
(
h2τ−3
Z + h−2

X h2τ−d
Z + h2τ−3

X

)
‖u∗(·, 0)‖2Hτ−1/2(S)

)
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with error functional

E(u) := ess sup
0≤t≤T

‖u‖2H1(S) + ‖u‖2L2(0,T ;H1(S)) + ‖u̇‖2L2(0,T ;H0(S)), (25)

if the smoothness order of kernel is τ ≥ b5/2 + d/2c. This estimate also applies if ∆S is
replaced by a more general second-order uniformly elliptic operator in divergence form

LSu(y, t) := −∇S ·
(
A(y, t)∇Su(y, t)

)
for (y, t) ∈ S × [0, T ],

with some diffusion tensor A satisfying [11, Asm. 1].
Example: Consider a pure surface diffusion problem on a torus with zero initial condition
g = 0 and a localized source function f , which is at the lower-left part of the surface as shown
in Fig. 1. The ODE (23) with zero initial condition λ(0) = 0(Z) can be solved by any black-
box solver; in this demo, we use ODE45 in MATLAB to call a Runge–Kutta method for an
adaptive integration.

Before we start solving ODEs, we need to ensure that the eigenvalues of the ODE matrix

−Φ(X,Z)†(∆SΦ)(X,Z)

in (23) are stable, i.e., no (large) real positive parts. We generate five sets of quasi-uniform
data points with size 361, 784, 1156, 2916, and 5476. These sets were used as both RBF
centers and collocation points. ODE matrices were generated using the Sobolev kernel in (1)
with smoothness order τ − 1/2 = 6 and 7.

Table 1 lists the maximum eigenvalues of these ODE matrix. We can clearly see the
entries (in red) that ODE matrices with X = Z can results in unstable eigenvalues. The need
of oversampling, a.k.a., over-testing, with nX > nZ is more evidential in this parabolic case
than in elliptic. All cases with oversampling have maximum eigenvalues in ODE matrix very
closed to zero (Spurious phenomenon due to the ill-conditioning problem of Φ(X,Z), i.e.,
factitious zero eigenvalues, were not considered.), some of them are positive that appears to
be a random phenomenon due to rounding error. For very long time integration, users may
consider applying some regularization.

Table 1: Maximum of eigenvalues of the ODE matrix associated with kernel with
smoothness order τ = 6.5 and τ = 7.5. Cases with unstable eigenvalues are colored
red for easy inspection.

nX = 784 1156 2916 5476

τ
=

6.
5 nZ = 361 1.00e-7 1.90e-7 2.91e-7 −1.79e-6

784 4.87e-7 −4.67e-6 −1.27e-6 −1.59e-6
1156 1.65e+4 1.80e-6 1.63e-6

τ
=

7.
5 nZ = 361 1.56e-4 9.27e-5 6.75e-5 5.32e-5
784 5.05e+3 2.57e-4 2.79e-5 3.93e-5

1156 8.28e+4 3.62e-5 5.74e-5

We pick the case τ = 6.5, nZ = 784 and nX = 1156 to complete the solution process up
to time t = 10. Two snapshots of the numerical solution are shown in Fig. 1. We report that
all the other cases with stable eigenvalues generate simulations that are indistinguishable to
the eyes.
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Figure 1: With nZ = 784 and nX = 1156, snapshots profiles, which use the same colormap
for easy comparison, of the RBF (τ = 6.5) MoL solutions to an isotropic diffusion
reaction equation at various times.
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6 CONCLUSION
Meshfree methods of any kind are good alternatives for solving PDEs on surfaces, on which
data points are intrinsically scattered. It is well-known that the error of Kansa method
concentrates near the boundary when we solve PDEs in bulk domain. Because there is no
boundary in closed surfaces, all Kansa methods we reviewed in this paper shows faster than
theoretical rate of convergence in practice. Although our presentation only covers linear
PDEs, more interesting numerical examples (i.e., Turing pattern formations, spiral wave
equation, Allen-Cahn, etc.) can be found in the references.
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