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ABSTRACT
In this paper, an FEM–BEM coupling method is presented to study the steady-state heat transfer
problem. In the analysis of some complex structures, the FEM–BEM coupling method has many
advantages. These advantages are: (i) The degrees of freedom can be highly reduced using the boundary
elements; (ii) The improved accuracy of solution over classical FEM; (iii) The use of powerful pre-/post-
processing module of the finite element software (ABAQUS); (iv) The improved efficiency of solving
multiscale structures. In this work, the user-defined element (UEL) subroutine in ABAQUS is used
to realize the coupling of ABAQUS and BEM. The model is divided into several parts and different
methods will be used over different part. In the implementation of the coupling scheme, BEM part
can be assembled into the ABAQUS as a super-element. And the coupling stiffness matrix which is
consisted of the true stiffness matrix of BEM and the stiffness matrix of FEM can be obtained. Then the
resulted system equations can be solved by the solver of ABAQUS. Results obtained by this coupling
method have an excellent agreement compared with the analytical or reference solutions.
Keywords: FEM–BEM coupling, ABAQUS, UEL, steady-state heat transfer.

1 INTRODUCTION
With the development of science and technology, semiconductor structures are widely used
in many areas. Since semiconductor structures are sensitive to the change of temperature,
thermal analysis of these structures has been widely studied [1]. In recent years, numerical
analysis of semiconductor structures is becoming a hot topic caused by the characteristic of
its simplicity, effectiveness and lower cost. Furthermore, the results obtained by numerical
techniques can provide some important guidances for the design of semiconductor structures.
However, for the numerical analysis of semiconductor structures, large number of multiscale
structures usually exist in a numerical model, which results in a big challenge for engineers
and researchers [2].

Up to now, many numerical schemes have been used to study multiscale structures
including finite element method (FEM), boundary element method (BEM), etc. In the thermal
analysis of the electronic devices with multiscale structures by finite element method (FEM),
large number of elements is needed to improve the accuracy of the results, which increases
the computing time sharply [3]. To solve some practical engineering problems by FEM, many
commercial tools are developed such as ABAQUS, ANSYS etc. All these tools can provide
powerful pre-/post-processor, which has attracted many engineers. BEM is also a useful
numerical technique for the solution of partial differential equations, offering an alternative to
the FEM for a range of engineering simulations [4]. The main advantages of the BEM derive
from the fact that its approximations (and mesh) only occur on the boundary, the dimension
of the numerical model therefore being one less than that of the physical problem being
modelled, and from the high accuracy of its solutions on comparatively coarse meshes [5]–
[9]. These advantages suggest the BEM can be effectively applied to the analysis of multiscale
structures. Actually, the coupling of FEM and BEM is also a powerful method for the thermal
analysis of the semiconductor structures. In 1977, Zienkiewicz et al. proposed the coupling of
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FEM and BEM to benefit from the combination of two methods [10]. Then, different coupling
methods are presented to solve all kinds of problems. In [11], Estorff and Firuziaan apply
the coupling BEM/FEM for nonlinear soil/structure interaction. Elleithy et al. proposed the
iterative coupling in the elastic statics and elastic plasticity problems [12], [13]. Godinho and
Soares also used the coupling method to solve the problem in soil-structure elastic dynamic
interaction [14]. In [15], Liu and Dong presented an automatic implementation procedure
for the coupling of the ABAQUS with a self-written linear elastic BE code for dynamic
elastoplastic problems. There are also many BEM–FEM coupling procedures, applied in
nonlinear, dynamic, complex interface and fluid/structure problems, that have been reported
in recent years [16]– [19].

In this paper, based on the commercial finite element analysis (FEA) software
(ABAQUS), we propose a coupling method of FEM–BEM and apply the scheme to a heat
transfer problem. In the implementation of the coupling, the BE region is defined as a large
finite element and its stiffness is computed and assembled into the global stiffness matrix
of FEM. The stiffness of the model from BE region is computed by the BEM code. To
realize the integration of BEM and FEM, the BEM code is put into user-defined element
(UEL) subroutine provided by ABAQUS. A classical heat transfer problem is presented to
demonstrate the correctness of this method.

2 THEORETICAL ANALYSIS
Many physical problems, such as electromagnetic problems, heat conduction, seepage and
acoustic problems, can be described by classical Laplace equations or Poisson equations. For
a 2D problem in Ω ∈ R2 with closed boundary Γ, the Laplace equations can be expressed as
follows:

∇2u(x) =
∂2u

∂x2
1

+
∂2u

∂x2
2

= 0, (1)

where ∇2 is the Laplace operator. u(x) is the potential function or temperature at point
x(x1, x2) ∈ Ω.

Eqn. (1) can be solved subject to a set of boundary conditions taken from the following:

u(x) = ū(x) on x ∈ Γ1, (2)

t(x) = k
∂u

∂n
= t̄(x) on x ∈ Γ2, (3)

where k is the thermal conductivity; t(x) is the heat flux. n is the outward pointing normal.
The quantities ū and t̄ are known temperature and heat flux, respectively. Γ = Γ1 ∪ Γ2 and
Γ1 ∩ Γ2 = φ.

2.1 FE formulations for the steady-state heat transfer problem

For the finite element solution of the heat transfer problem, we can obtain the following
functional expressions based the conclusion in [20]:

Π(u) =
∫

Ω

[
1
2
k

(
∂u

∂x1

)2

+
1
2
k

(
∂u

∂x2

)2
]
dΩ−

∫
Γ2

tudΓ. (4)

In the implementation of FEM, the considered domain Ω is discretized into surface or
body elements. The temperature inside a surface element e can be obtained by following
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interpolation equation:

u ≈ ũ =
ne∑
i=1

Ni (x1, x2)ui, (5)

where ne is the number of nodes for one element. Ni(x1, x2) is the interpolation function. ui

is the local temperature associated with the node with index i.
Substituting eqn (5) into the discrete functional formulation, invoking δΠ(u) = 0, we can

obtain the following finite element equation for steady heat conduction problems

Ku = R, (6)

where K is the stiffness matrix for heat transfer problems. Here, K is a symmetric
matrix. Array u = [u1 u2 · · · un]T contains the nodal temperature. Vector R contains the
temperature load. The elements Kij and Ri of Matrix K and R can be expressed as:

Kij =
∑

e

Ke
ij , (7)

Ri =
∑

e

Re
qi
, (8)

where Ke
ij and Re

qi
can be expressed as

Ke
ij =

∫
Ωe

k(
∂Ni

∂x1

∂Nj

∂x1
+
∂Ni

∂x2

∂Nj

∂x2
)dΩ, (9)

Re
qi

=
∫

Γe
2

NitdΓ, (10)

2.2 BE formulations for the heat transfer problems

For a 2D heat transfer problem, the corresponding boundary integral equation can be written
as [21]

cu(p) =
∫

Γ

u∗(Q, p)t(Q)dΓ(Q)−
∫

Γ

t∗(Q, p)u(Q)dΓ(Q), (11)

where p represents the source point; Q represents the field point; c is a known value that
depends on the geometric shape around the source point p. u∗(Q, p) and t∗(Q, p) denote the
temperature and flux fundamental solution kernels, which are defined by

u∗(Q, p) = − 1
2π

ln r, (12)

t∗(Q, p) =
∂u∗

∂r

∂r

∂n
. (13)

For the implementation of BEM, the boundary Γ will be divided into n elements Γelem

(elem = 1, 2, . . . ,n). Then, the boundary integral eqn (11) can be written in a discretized
form

c(pi)u(pi) +
n∑

elem=1

∫
Γelem

t∗ (Q, pi)uQdΓ (Q) =
n∑

elem=1

∫
Γelem

u∗ (Q, pi) tQdΓ (Q), (14)
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where

uQ =
ne∑

j=1

Nju
j , (15)

and

tQ =
ne∑

j=1

Njt
j . (16)

Γelem is the boundary of element with index ‘elem’; pi is the source point with index i.
By considering eqn (14) at a sufficient number of source points, we can get the system of

equation
Hu = Gt, (17)

where u and t represent the vectors contained temperature and flow at boundary nodes.
Matrix H is a square matrix containing a combination of the integrals of the t∗ kernel and
coefficient c. G is a rectangular matrix of u∗ kernel integrals.

3 COUPLING OF BEM AND FEM
Considering the coupling of structure domain ΩF and ΩB (Ω = ΩF ∪ ΩB , ΩF ∩ ΩB = φ).
In domain ΩF , the finite element method will be used. And boundary element method will
be used in domain ΩB .

3.1 Formulations of finite element method

According to the nodal locations, eqn (7) can be written as[
Koo Koi

Kio Kii

]{
tFo

uFi

}
=
{

RFo

RFi

}
, (18)

where Ksub, tsub, usub, and Rsub are the newly constructed matrices and vectors. Fi

represents the quantities related to the interface in the FEM domain. And Fo indicates the
quantities related to the non-interface part in the FEM domain.

3.2 Formulations of boundary element method

Similarly, based on the nodal locations, eqn (17) can be written as[
Hii Hio

Hoi Hoo

]{
uBi

uBo

}
=
[

Gii Gio

Goi Goo

]{
tBi

tBo

}
, (19)

where Hsub, Gsub, usub and tsub are the newly constructed matrices and vectors. And the
subscriptBi represents the quantities related to the interface in the BEM domain.Bo indicates
the quantities related to the non-interface part in the BEM domain.

Along the interface between the domains ΩF and ΩB , the continuity condition requires
that temperature calculated for the ΩF must equal the temperature calculated for the ΩB . And
a similar relationship remains for the equilibrium condition along the interface, except that a
negative sign must be given to account for the opposite directions of the outward boundary
normal in the two domains. To use these relationships, eqn (19) can be transformed to the
following form by setting Hio = 0[

Aii 0
Aoi Aoo

]{
uBi

uBo

}
=
[

Bii Bio

Boi Boo

]{
tBi

tBo

}
. (20)
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From eqn (20), we can obtain the following equation

AiiuBi = BiitBi + BiotBo. (21)

Then, eqn (21) can be expressed as

tBi
= B−1

ii AiiuBi
−B−1

ii BiotBo. (22)

The heat flux tBi
in eqn (22), should be converted into the equivalent nodal flux RBi

which is used in finite element method. And RBi
can be expressed in the form

RBi = MBtBi = KBiuBi − R̄Bi , (23)

where MB is a transformation matrix and

R̄Bi = MBB−1
ii BiotBo. (24)

According to the continuity condition of interface, the coupling equation can be finally
expressed as [

Koo Koi

Kio Kii + KBi

]{
uFo

uFi

}
=
{

RFo

R̄Bi

}
. (25)

It should be noted that KBi
obtained from BEM domain is asymmetric, which destroys the

sparsity of the FE stiffness matrix. Therefore, we will replace KBi
by an enhanced symmetric

matrix Kl. And the coupling equation in eqn (25) is converted as follows:[
Koo Koi

Kio Kii + Kl

]{
uFo

uFi

}
=
{

RFo

R̄Bi

}
+
{

0
−KBi + Kl

}
{uFi} , (26)

where
Kl =

1
2
(
KT

Bi
+ KBi

)
. (27)

4 IMPLEMENTATION OF THE COUPLING WITH ABAQUS
ABAQUS is a powerful engineering finite element software, including various types of
element libraries and material model libraries. It is becoming an important tool for engineers
to solve complex nonlinear problems. In this section, we will introduce the scheme that
combines a self-written BEM-code and the commercial finite element software ABAQUS.
The UEL (User Element Subroutine) [22] provided by ABAQUS will be used to realize the
coupling of FEM and BEM. The implementation process is given as follows:

• As shown in Fig. 1(a), the considered domain is divided into two sub-regions, i.e. FE
region and BE region. Then, the FE region needs to be divided into quadrilateral or
triangular finite elements which can be easily solved by pre-process tools of ABAQUS.
While, for the BE region, only boundary element is used (see Fig. 1(b)).
• In the coupling scheme, one single model including FE and BE parts (shown in

Fig. 2(a)) should be built by the ABAQUS platform. Here the BE part is defined as
a one-dimensional simplified FE part. It should be noted that the number of nodes at
the interface between FE region and BE region must be equal. And the corresponding
nodes will be connected by the command ‘tie’, as shown in Fig. 2(b). Then the model
can be analyzed as a pure FE model.

Boundary Elements and other Mesh Reduction Methods XLIV  125

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 131, © 2021 WIT Press



FEM BEM

(a) A model divided into two regions (b) Mesh for the coupling model

Figure 1: The coupling model.

BE part

FE part

(a) FE part and BE part

FE part
BE part

tie

(b) Two parts connected by command ‘tie’

Figure 2: Model built by ABAQUS.

5 NUMERICAL EXAMPLE
To demonstrate the accuracy and effectiveness of the new coupling approach, we examine
a simple example about heat transfer problem. To carry out the accuracy and convergence
analysis, a relative error defined in eqn (28)

Relative error (RE) =
|fnum − fref |
|fref |

, (28)

where fnum and fref represent the numerical solution and reference solution, respectively.

8

16

𝑢
𝑡

𝑢

𝑦

𝑢 = 𝑦2

𝑡

𝑦

𝑦

𝑥

𝑡 = 2𝑦

Figure 3: Considered rectangular plate.

As shown in Fig. 3, consider a 8× 16 rectangular plate. The Dirichlet boundary condition
is exerted on the left side of the plate and given by the u = y2. The Neumann BC is exerted on
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the right side of the right region. Its given by the t = 2y. All the upper and lower boundaries
are insulated, i.e. ∆u · n = 0. In the computation by the current coupling method, the plate in
Fig. 3 is divided into two parts. And the left domain will be analyzed by FEM and the BEM
will be used on the right part.

The mesh used in the coupling method is given in Fig. 4(a), from which we can see that
the left region is divided into quadrilateral elements. And only the boundary is discretized
in the right region. Fig. 4(b) shows the one-dimensional simplified FE part. And we can see
from Fig. 4(b) that the number of nodes on the left side equals the number of nodes for the
right curve.

FFEEFE BE

(a) Mesh for FE and BE parts

FFEEFE

(b) Model established by ABAQUS

Figure 4: Mesh for the considered model.

(a) Current coupling method (b) FEM obtained by ABAQUS

Figure 5: Temperature distribution for different methods.

Here, a finite element model is constructed with ABAQUS to offer a reference solution.
The element DC2D4 is used in this numerical example. The mesh consists of 1024 elements
and 1089 nodes. The temperature distribution of the left region is given in Fig. 5(a) and 5(b)
for the two methods. One can find that the results obtained by the current method are in good
agreement with the FEM solutions.

To study the accuracy of the present method, some points are selected along the bottom
boundary (with parametric equations (x, 0), 0 ≤ x ≤ 8) and the interface between the FEM
part and BEM part. The temperature along different curves for different ndof are given in
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Fig. 6(a) and 6(b). Here, the number of degree of freedom (ndof) is the sum of ndof from FE
part and BE part.
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(b) Along the bottom boundary

Figure 6: The temperature calculated along different curves for different ndofs.

To study the convergence rate of the present method, a problem for which we can find
the analytical solution is studied. The Dirichlet boundary condition on the left is changed
as the fixed value 0. And the Neumann boundary condition is changed to 1. The exact
temperatures for any point can be given as u = x. Fig. 7(a) and 7(b) show the relative errors
of temperature as the ndof increases from 336 to 1184. From Fig. 7(a) and 7(b), we draw the
same conclusions as from Fig. 6(a) and 6(b), in that the relative errors of interfacial points
are larger than that of boundary points. And the convergence of relative errors can be clearly
seen for the two sets of points.
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(b) Along the interface between BE and FE regions

Figure 7: Relative errors of temperature for different ndof.

6 CONCLUSION
Based on the finite element software ABAQUS, this paper presents a FEM–BEM coupling
method and apply it to the steady-state heat transfer problem. In the implementation of
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coupling method, the UEL provided by ABAQUS is used to combine the self-written BEM-
code and ABAQUS. The self-written BEM-code is used to obtain the effective stiffness matrix
of the BE region. Then the resulted effective stiffness matrix and stiffness matrix of FEM
region will form a coupling stiffness matrix, which will be solved by the solver of ABAQUS.
Finally, a simple example about heat transfer problem is calculated by this method.
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