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ABSTRACT 
Modeling and analyzing multi-story buildings is an important part of structural engineering. Typically, 
this analysis is carried out using the finite element method by assembling the stiffness matrices of the 
floor elements and the vertical supporting elements at the intersecting nodes. Any consideration of soil-
structure interaction (SSI) is often simplified using a Winkler model. However, the procedure for 
modeling practical buildings of complex geometries using the finite element method can be 
cumbersome. Alternatively, a new formulation that is based on the boundary element method (BEM) 
is presented that provides a seamless procedure for modeling practical buildings as the discretization of 
the floors is done at the floor perimeter and SSI is modeled using an elastic half space (EHS) model. 
The stiffness matrices of the slab and raft are generated using the BEM by introducing an additional 
collocation scheme at their intersection with the columns and the underlying soil. Columns are modeled 
as skeletal frame elements and the floors are considered as rigid diaphragms in their planes. Soil is 
modeled as an EHS and its stiffness matrix is derived based on the Bousinessq solution of an elastic, 
isotropic, homogenous, and infinite thickness half space. Assembly of the overall building stiffness 
matrix is carried out using the well-known assembly procedure associated with the stiffness analysis 
method. The proposed methodology is validated by comparing the results against the more traditional 
finite element approach. An illustrative example is solved showing agreement of the results between 
the proposed methodology and the finite element method. 
Keywords:  boundary element method, elastic half space, soil–structure interaction, multi-story 
buildings, stiffness analysis. 

1  INTRODUCTION 
There is a need to develop robust techniques for modeling and analyzing multi-story 
buildings. This need provides an opportunity for the use of the boundary element method, as 
a meshless technique, in modeling multi-story buildings while accounting for soil-structure 
interaction. Multi-story buildings consist of horizontal elements (e.g., slabs, beams, etc.) and 
vertical elements (e.g., columns, walls, etc.). The horizontal and vertical elements are 
supported above the ground by the foundation (e.g., raft, isolated footings, etc.). 

The boundary element formulation of a flat plate supported by columns only is presented 
in [1]. Many researchers also worked on modeling a flat plate supported by beams using the 
boundary element method either based on Kirchhoff–Love plate theory [2], [3] or Mindlin–
Reissner plate theory [4], [5]. Edge beams are considered in the formulation presented by [2], 
[6] while in [5], [7] beams are modeled as a plate region with different thickness and material 
properties. In [4], a practical boundary element formulation is presented that can account for 
beams with any arbitrary configuration. 

The problem of soil-structure interaction has been investigated extensively over the past 
few decades [8]–[12]. The analysis of a Mindlin–Reissner plate on an elastic half space 
(EHS) is presented in [8]. This analysis has been extended in [9] to account for the non-
linearity of the soil using an iterative procedure. A similar approach is presented in [10] to 
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solve for a tensionless foundation. The analysis of the piled raft is presented in [11] where 
the pile-soil-raft interaction is considered. 

In this work, a comprehensive methodology for the analysis of multi-story buildings 
including soil-structure interaction is presented. The presented methodology combines the 
use of the boundary element method to model the slabs and foundation raft, the elastic half 
space to model the underlying soil, and the stiffness analysis method. The presented 
methodology is applied to a three-story building and the results are validated using the finite 
element method. 

2  STIFFNESS ANALYSIS OF MULTI-STORY BUILDINGS 
Stiffness analysis has been widely used to analyze multi-story buildings under various 
loading conditions. The analysis applies Hooke’s law which is stated as follows: 
 

ሼ𝐏ሽ ൌ ሾ𝐊ሿሼ𝐮ሽ,                                                       (1) 
 
where ሼ𝐏ሽ is the loading vector; ሼ𝐮ሽ is the displacement vector; and ሾ𝐊ሿ is the total stiffness 
matrix. 

The total stiffness matrix ሾ𝐊ሿ for the structure shown in Fig. 1 is obtained by assembling 
the stiffness matrices of the slabs, columns, raft, and soil. Columns are modeled using frame 
elements and their stiffness matrices are obtained as described in [13]. The slabs and raft are 
modeled using the Mindlin–Reissner plate bending theory while the supporting soil below 
the building raft is modeled as an elastic half space. 
 

 

Figure 1:  Schematic of the multi-story building under consideration. 
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3  SOIL STIFFNESS MATRIX 
The soil below the raft is modeled as an elastic half space (EHS), Fig. 2, and the stiffness 
matrix of the elastic half space is estimated as follows: 
 

ሾ𝐊ாுௌሿ ൌ ሾ𝐅ாுௌሿିଵ,                                                      (2) 
 
where ሾ𝐅ாுௌሿ is the flexibility matrix of the elastic half space. 
 

 

Figure 2:  Raft on elastic half space. 

The coefficients of ሾ𝐅ாுௌሿ are calculated based on the Bousinessq solution [14] which 
provides the displacement of a point (𝑗) lying on the surface of an elastic, isotropic, 
homogenous, and infinite thickness half space due to a concentrated unit load at point (𝑖), 
 

𝑓௜௝ ൌ
ଵିఔ

ଶగீ௥೔ೕ
        ∀ 𝑖 ് 𝑗,                                                   (3) 

 
where 𝑓𝑖𝑗 represents the coefficients of ሾ𝐅ாுௌሿ; 𝜈 is the Poisson’s ratio; 𝐺 ൌ 𝐸 2ሺ1 ൅ 𝜈ሻ⁄  is 

the modulus of rigidity; 𝐸 is the modulus of elasticity; and 𝑟𝑖𝑗 is the distance between the 
loading point (𝑖) and the displacement point (𝑗). 

It should be noted that calculating the diagonal terms of ሾ𝐅ாுௌሿ using eqn (3) (i.e., 
calculating the displacement at the concentrated load point) will lead to a singularity. This 
singularity is handled by replacing the concentrated load with an equivalent pressure that is 
distributed over the 𝑖୲୦ cell area (𝐵௜ ൈ 𝐿௜) [8]. 
 

𝑓௜௜ ൌ
ோ೔ሺଵିఔሻ

గீ஻೔
,                                                              (4) 

 
where 𝑅𝑖 is the rectangularity factor of the 𝑖୲୦ cell which is calculated as follows: 
 

𝑅௜ ൌ ln ൤𝛽௜
ିఉ೔ቀ1 ൅ ඥ1 ൅ 𝛽௜

ଶቁ
ఉ೔

ቀ𝛽௜ ൅ ඥ1 ൅ 𝛽௜
ଶቁ൨,                                      (5) 

 
where 𝛽௜ ൌ 𝐵௜ 𝐿௜⁄  is the rectangularity ratio. 
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4  MINDLIN–REISSNER PLATE STIFFNESS MATRIX 
The building slabs and raft are modeled using the Mindlin–Reissner plate bending theory. 
The boundary element method is used to solve the Mindlin–Reissner plate problem in order 
to generate the slabs’ and raft’s stiffness matrices. 

4.1  Boundary integral equation for a plate with internal supports 

Figs 3 and 4 show a boundary element model for a slab and raft, respectively. The indicial 
notation is used in this section where the Greek indices vary from 1 to 2 (to denote the x and 
y directions) and Roman indices vary from 1 to 3 (to denote the x, y, and the z directions). 
Slabs are modeled using Mindlin–Reissner plate bending theory where 𝛤 and 𝛺 are the slab 
boundary and domain, respectively. The intersection area between the plate and the internal 
supports (i.e., columns and soil) are called supporting cells. Each supporting cell has a node 
located in its centroid. The direct boundary integral equation for a slab with supporting cells 
can be written as follows [4]: 
 

𝐶௜௝ሺ𝛏ሻ𝑢௝ሺ𝛏ሻ ൅ ׬ 𝑇௜௝ሺ𝛏, 𝐱ሻ𝑢௝ሺ𝐱ሻ
௰ሺ𝐱ሻ 𝑑𝛤ሺ𝐱ሻ െ ׬ 𝑈௜௝ሺ𝛏, 𝐱ሻ𝑡௝ሺ𝐱ሻ

௰ሺ𝐱ሻ 𝑑𝛤ሺ𝐱ሻ ൌ

∑ ቂ׬ ቂ𝑈௜௞ሺ𝛏, 𝐬ሻ െ
ఔ

ሺଵିఔሻఒమ 𝑈௜ఈ,ఈሺ𝛏, 𝐬ሻ𝛿ଷ௞ቃ 𝐹௞ሺ𝑠ሻ𝑑𝛺ሺ𝑠ሻ
ఆሺ௦ሻ

ቃேೞ ,                              (6) 

 
where 𝐶௜௝ is the jump term; 𝛏 is the source boundary point; 𝐱 is the field point; 𝑇௜௝ and 𝑈௜௝ 
are the fundamental solution kernels for traction and displacement, respectively; 𝑡௝ and 𝑢௝ are 
the boundary generalized traction and displacement, respectively; 𝑁௦ is the number of 
supporting cells; 𝐬 is the centroid of the supporting cell; 𝛺ሺ𝑠ሻ is the domain of the supporting 
cell; 𝜈 is the Poisson’s ratio; 𝜆 is the shear factor; 𝐹௞ is the interaction force between the 
supporting cell and the plate per unit area. 
 

 

Figure 3:  Slab boundary element discretization. 
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Figure 4:  Raft boundary element discretization. 

The plate boundary, Figs 3 and 4, is discretized into 𝑁௘ quadratic boundary elements. 
Then, the traditional collocation procedure is carried out at each boundary node which leads 
to the following matrix form of eqn (6): 
 

ሾ𝐀ሺ𝛏, 𝐱ሻሿଷேൈଷேሼ𝐮/𝐭ሺ𝐱ሻሽଷேൈଵ ൌ ሾ𝐁ሺ𝛏, 𝐬ሻሿଷேൈଷேೞሼ𝐅ሺsሻሽଷேೞൈଵ,                        (7) 
 
where ሾ𝐀ሺ𝛏, 𝐱ሻሿ and ሾ𝐁ሺ𝛏, 𝐬ሻሿ are the coefficient matrices obtained from the left hand side 
and right hand side of eqn (6), respectively; ሼ𝐮/𝐭ሺ𝐱ሻሽ is the vector of the unknown boundary 
displacements or tractions; ሼ𝐅ሺsሻሽ is the vector of the forces at the supporting cells; 𝑁 is the 
number of the boundary nodes which equals 2𝑁௘. 

The unknowns in eqn (7) are ሼ𝐮/𝐭ሺ𝐱ሻሽ and ሼ𝐅ሺsሻሽ. The number of unknowns (3𝑁 ൅ 3𝑁௦) 
in eqn (7) is greater than the number of equations (3𝑁). A solution strategy that is based on 
an additional collocation scheme pattern is proposed to solve eqn (7). 

4.2  Solution strategy 

The solution strategy uses an additional collocation scheme between the centroid of the 
supporting cells (𝐬) as the source point and the slab boundary (𝐱) as the field point. 
 

𝑢௝ሺ𝐬ሻ ൅ ׬ 𝑇௜௝ሺ𝐬, 𝐱ሻ𝑢௝ሺ𝐱ሻ𝑑𝛤ሺ𝐱ሻ
௰ሺ𝐱ሻ െ ׬ 𝑈௜௝ሺ𝐬, 𝐱ሻ𝑡௝ሺ𝐱ሻ𝑑𝛤ሺ𝐱ሻ

௰ሺ𝐱ሻ ൌ ∑ ቂ׬ ቂ𝑈௜௞ሺ𝐬, 𝐬ሻ െ
ఆሺ௦ሻேೞ

ఔ

ሺଵିఔሻఒమ 𝑈௜ఈ,ఈሺ𝐬, 𝐬ሻ𝛿ଷ௞ቃ 𝐹௞ሺ𝑠ሻ𝑑𝛺ሺ𝑠ሻቃ.   (8) 

 
Eqn (8) is then written in the following matrix form: 
 

ሼ𝐮ሺ𝐬ሻሽଷேೞൈଵ ൅ ሾ𝐀ሺ𝐬, 𝐱ሻሿଷேೞൈଷேೞሼ𝐮/𝐭ሺ𝐱ሻሽଷேೞൈଵ ൌ ሾ𝐁ሺ𝐬, 𝐬ሻሿଷேೞൈଷேೞሼ𝐅ሺsሻሽଷேೞൈଵ,     (9) 
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where ሾ𝐀ሺ𝐬, 𝐱ሻሿ and ሾ𝐁ሺ𝐬, 𝐬ሻሿ are the coefficient matrices obtained from the left hand side 
and right hand side of eqn (8), respectively. 

The additional collocation scheme generates additional equations that are combined with 
eqn (7) to balance the number of equations with the number of unknowns as follows: 
 

ቈ
ሾ𝐀ሺ𝛏, 𝐱ሻሿଷேൈଷே െሾ𝐁ሺ𝛏, 𝐬ሻሿଷேൈଷேೞ

ሾ𝐀ሺ𝐬, 𝐱ሻሿଷேೞൈଷேೞ െሾ𝐁ሺ𝐬, 𝐬ሻሿଷேೞൈଷேೞ

቉ ൜
ሼ𝐮/𝐭ሺ𝐱ሻሽଷேൈଵ

ሼ𝐅ሺ𝐬ሻሽଷேೞൈଵ
ൠ ൌ ൜

𝟎ଷேൈଵ

െሼ𝐮ሺ𝐬ሻሽଷேೞൈଵ
ൠ.         (10) 

4.3  Stiffness matrix generation 

The slab and raft stiffness matrices are obtained by setting each generalized displacement in 
ሼ𝐮ሺ𝐬ሻሽ that corresponds to the degrees of freedom at the supporting cells to unity (one at a 
time). Eqn 10 is then solved. The resulting ሼ𝐅ሺ𝐬ሻሽ represents a column (or row) in the slab or 
raft stiffness matrix. The following equation summarizes this process: 
 

ቈ
ሾ𝐀ሺ𝛏, 𝐱ሻሿଷேൈଷே െሾ𝐁ሺ𝛏, 𝐬ሻሿଷேൈଷேೞ

ሾ𝐀ሺ𝐬, 𝐱ሻሿଷேೞൈଷேೞ െሾ𝐁ሺ𝐬, 𝐬ሻሿଷேೞൈଷேೞ

቉ ቊ
ሾ𝐮/𝐭ሺ𝐱ሻሿଷேൈଷேೞ

ሾ𝐊௦௟௔௕ሿଷேೞൈଷேೞ

ቋ ൌ ൜
𝟎ଷேൈଷேೞ

𝐈ଷேೞൈଷேೞ

ൠ,             (11) 

 
where 𝐈 is the identity matrix; and 𝐊௦௟௔௕ is the slab stiffness matrix. 

5  APPLICATION 
In this section, the presented methodology is applied to analyze the multi-story building 
shown in Fig. 5. Analysis results are then compared with the finite element method (FEM) 
to validate the presented boundary element method approach. 
 

 

Figure 5:  Structural system of the multi-story building. 
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5.1  Model description 

The considered multi-story building consists of three levels as shown in Fig. 5. Dimensions 
of the slab are 5 ൈ 5 mଶ and its thickness is 0.25 m. The slabs are supported by four columns 
which have a cross-section of 0.5 ൈ 0.5 mଶ. The four columns extend from the top slab to 
the raft which is 7 ൈ 7 mଶ and its thickness is 0.8 m. 

The material used for the slabs, columns, and raft is concrete (𝐸 ൌ 2.5 ൈ 10଺ t/mଶ and 
𝜈 ൌ 0.2). The modulus elasticity of the soil is 10ଷ t/mଶ while the Poisson’s ratio is taken as 
0.2. The three slabs are loaded with a uniform load of 1.6 t/mଶ. 

The boundary element models of a slab and raft are shown in Fig. 6. Fig. 7 shows the 
finite element model used to validate the results from the presented methodology [15]. The 
slabs and raft are modeled using Reissener plates, columns are modeled using frame 
elements, and the soil is modeled using solid elements. The size of the modeled soil block is 
27 ൈ 27 ൈ 14 mଷ. 

5.2  Results and discussion 

Figs 8 and 9 compare the deflection (𝑢ଷ) obtained from the presented boundary element 
method approach and that from the finite element model for the top slab and the raft, 
respectively. The maximum deflection of the raft in the FEM is 19 mm which is around 5% 
less than the maximum deflection in the BEM (20 mm). For the top slab, the difference 
between the maximum and minimum deflection is 0.2 mm in the BEM which matches the 
results from the FEM with less than 1% difference. 

Figs 10 and 11 compare the bending moment (𝑀ଵଵ) obtained from the BEM and the FEM 
for the top slab and the raft, respectively. The maximum negative moment,  𝑀ଵଵ, for the 
middle of the top slab in the BEM is െ0.731 t. m which is approximately 1.5% larger than 
the FEM (െ0.72 t. m). The maximum positive, 𝑀ଵଵ, for the top slab (at the column edge) in 
the BEM is 1.2 t. m which is 4% less than the FEM (1.25 t. m). For the raft, Fig. 11, 
maximum negative and positive 𝑀ଵଵ in the BEM and FEM vary within 2–5% as well. These 
results validate the presented methodology as they show agreement between the BEM and 
the FEM. 

 

 

Figure 6:  Boundary element model. (a) Slab; and (b) Raft. 
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Figure 7:  Three-dimensional finite element model for the building and the supporting soil. 

 

Figure 8:    Top slab deflection (𝑢ଷሻ. (a) Presented methodology; and (b) Finite element 
method. 
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Figure 9:  Raft deflection (𝑢ଷሻ. (a) Presented methodology; and (b) Finite element method. 

 

Figure 10:    Top slab bending moment (𝑀ଵଵሻ. (a) Presented methodology; and (b) Finite 
element method. 

6  CONCLUSIONS 
This paper presents a methodology for the analysis of multi-story buildings including soil-
structure interaction. The slabs and raft are modeled using a Mindlin–Reissener plate and 
their stiffness matrices are obtained using the boundary element method. Columns are 
modeled as frame elements and the soil is modeled as an elastic half space. The interaction 
between the soil and the building raft is handled using an internal support BEM-based 
formulation for the Mindlin–Reissener plate. Finally, the stiffness matrices of all building 
elements as well as the soil are assembled using the well-known technique of stiffness 
analysis method. The presented methodology is validated by comparing its results against the 
finite element method. 
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Figure 11:    Raft bending moment (𝑀ଵଵሻ. (a) Presented methodology; and (b) Finite element 
method. 
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