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ABSTRACT 
This article presents a numerical algorithm based on the singular boundary method (SBM) for the 
incompressible steady Navier–Stokes equations formulated using primitive variables. The SBM with 
the Stokeslet fundamental solution and dual reciprocity (DR) principle has been chosen to solve  
the nonlinear flow equations. The particular solution of the non-homogeneous Stokes equations is 
constructed as a linear combination of implicitly local radial basis function. The simple direct iterative 
scheme was used to handle nonlinearities of Navier–Stokes equations with a variation of the  
non-homogeneous term of the particular solution. The non-homogeneous term is formed using the 
nonlinear convective terms of the momentum equations, evaluated using values from previous 
iterations. It is found that SBM with a localized DR principle gives reasonable results for numerical 
problems of lid-driven cavity flow up to Re = 3200, and the backward-facing step at Re = 800. 
Keywords:  singular boundary method, dual reciprocity, Navier–Stokes equation, Stokeslet. 

1  INTRODUCTION 
The solution of Navier–Stokes (NS) equations is one of the basic tasks of computational 
hydromechanics. Together with the continuity equation, it is a system of nonlinear equations. 
This system has already been clarified by a number of numerical methods, starting with the 
finite difference method through finite element method to modern meshless methods. The 
meshless methods consist of the smooth particle hydrodynamics (SPH) [1], the least square 
collocation meshless method [2]–[4], the meshless local Petrov–Galerkin (MLPG) method 
[5], [6], the local boundary integral element method (LBIEM) [7]–[9], and the radial basis 
integral equation method (RBIEM) [10]–[12]. All of these methods have advantages as well 
as shortcomings. One category of numerical methods used to solve the NS equations is a 
group of the formulas based on the boundary integral, such as e.g. boundary element method 
(BEM). The methods based on the boundary integral theory are represented by the BEM [1], 
[2], the method of fundamental solutions (MFS) [3], [4], and the singular boundary method. 
In the case of BEM, the singularities of the fundamental solution of the solved problem are 
handled by proper integration method, the MFS overcomes the singularity using a fictitious 
boundary, but the optimum location of this boundary remains the open problem especially 
for complex-shaped domains. To bypass the fictitious boundary construction, the singular 
boundary method (SBM) formulation adopts a concept of the origin intensity factors (OIFs). 
Several techniques have been developed to determine the source intensity factors, namely, 
inverse interpolation technique (IIT), subtracting and adding-back regularization and 
empirical formulas [8], [9]. In this article, the regularized boundary integral equation is used 
to derive a formula for Dirichlet origin intensity factors.  
     For the problems governed by the NS equation, these methods have to use a connection 
with complementary methods to be able to effectively handle nonlinear transport members 
of this system. The final solution is represented as a combination of the singular boundary 
integral and particular solutions. In this work, we present the possibility how to solve the 
steady fluid flow governed by the primitive variable form of NS equations using SBM with 
dual reciprocity (DR) scheme used to tackle the in-homogeneities brought by nonlinear 
transport terms of NS equations. Section 2 of our paper introduces NS equations in primitive 
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variable form. Section 3 contains a brief description of the SBM and the connection with the 
DRM. Section 4 is dedicated to the two numerical examples and the last section, Section 5, 
contains the conclusions. 

2  GOVERNING EQUATIONS 
Incompressible steady flow is governed by Navier–Stokes equations in the closed domain Ω 
with the boundary Γ, which can be written in their primitive variables as 
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where ui is the velocity vector component in the direction i, p is the pressure, ν is the kinematic 
viscosity, ρ is the density of a liquid, and fi represents body forces component in the direction 
i. The flow should satisfy boundary conditions in the form 

 𝑢௜ሺ𝑥஽ሻ ൌ 𝑓௜ሺ𝑥஽ሻ𝑥஽ ∈ Γ஽, (3) 

 𝑡௜ሺ𝑥ேሻ ൌ 𝜎௜௝𝑛௝ሺ𝑥ேሻ𝑥ே ∈ Γ, (4) 

where ui are the velocities and ti are the tractions on the boundary and nj represents the 
outward normal to the boundary. The stress tensor is defined as 
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     The solution of eqns (1) and (2) can be defined as eqn (6): 

 𝑢௜ ൌ 𝑢௜
ୌ ൅ 𝑢௜

୔,  𝑝 ൌ 𝑝ୌ ൅ 𝑝୔, (6) 

where uH are the solutions of the homogeneous problem that captures the Stokes equations 
together with the boundary conditions (eqns (3) and (4)) and uP

i and pP are the particular 
solutions of the non-homogeneous eqns (1) and (2). The homogeneous problem can be 
determined using the SBM and the particular solution is formulated using the method of the 
particular solution (MAPS). 

3  SINGULAR BOUNDARY METHOD 
The SBM is based on the same principle as the MFS however the SBM utilizes the same set 
of collocation and source points placed on the boundary Γ. The Green’s function Gij is the 
fundamental solution of the Stokes equation known as Stokeslet: 
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     The traction fundamental solution Kij is 
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and corresponding pressure solution pj is 
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     The SBM defines the solution of the homogeneous problem using the Green’s  
functions as 
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where αk are the unknown coefficients, xm and yk are the collocation and source points and 
Uij, Tij are the origin intensity factors, respectively. Origin intensity factors (OIFs) are a key 
problem for the SBM. In order to prevent problems concerning the OIF of the Stokeslet for 
the 2D domains, the regularized boundary integral formulation described in Zhang et al. [13] 
and Sun et al. [14] has been used. 
     The OIFs associated with the Laplace fundamental solution for the Neumann type 
boundary condition can be calculated using subtracting and adding-back technique [7], [13]: 
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where Lj is the length of the appropriate part of the boundary around point x (see Fig. 1). In 
the case of the Dirichlet boundary condition, one of the numerous possibilities of how to 
evaluate OIF is eqn (13), based on the get regularized boundary integral: 
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Figure 1:  Part of boundary L around point xi. 

3.1  Dual reciprocity method: particular solution 

The particular solutions uP, and pP of eqn (6) is approximated using a linear superposition of 
the radial basis functions [15]: 

 𝑢௜
୔ ൌ ∑ 𝛽௝௞𝑢ത௜௞൫𝑟௝൯ெ

௝ୀଵ , 𝑝୔ ൌ ∑ 𝛽௝௞𝑝̅𝑘 ൫𝑟௝൯ெ
௝ୀଵ , (14) 

where M is the number of the internal points, βj are the unknown coefficients, and 𝑢ത௜௞ and 𝑝̅௞ 
are the radial basis functions which can be defined as the particular solutions of the following 
non-homogeneous system of eqns (15) and (16): 
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where φ(r) is the implicitly compactly supported RBF function (MQ) defined as 

 𝜑ሺ𝑟ሻ ൌ ቀ1 െ
௥

ఈ
ቁ, (16) 

where r is Euclidean distance from the function origin and the α is scaling parameter used  
to represent the radius of circular support domain, the values outside the support domain are 
set as zeros. One of the main difficulties is the problem of how to find a closed-form 
expression of the particular solutions 𝑢ത௜௞ and 𝑝̅௞. To solve the problem, we employ the way 
more detailed one described in more detail in Florez and Power [15], Bustamante et al. [16] 
and Happel and Brenner [17]. As the first step, an auxiliary potential Φ is defined and is used 
to express the velocity particular solution as follows: 

 𝑢ത௜௞ ൌ
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𝛿௜௞ െ

డమ஍
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. (17) 

     The velocity particular solution captures implicitly the continuity equation, which can  
be checked by supplying the above velocity field into the continuity equation. Substituting 
eqn (17) into the momentum eqn (15) allows us to write 
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     The particular solution we explore is represented by the RBF approximation of the 
auxiliary potential used to express velocity, pressure and stress fields. The particular solution 
can be found splitting the momentum eqn (18) into two parts and satisfying these two 
equations. Then the following system is obtained: 

 𝜇
డర஍

డ௫ೕడ௫ೕడ௫ೖడ௫ೖ
ൌ 𝜑ሺ𝑟ሻ, (19) 

 𝜇
డర஍

డ௫ೕడ௫ೕడ௫೔డ௫ೖ
൅

డ௣̅ೖ

డ௫೔
ൌ 0. (20) 

     The second, eqn (20), can be used to obtain pressure particular solution 

 𝑝̅௞ ൌ 𝜇
డయ஍
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. (21) 

     The first, eqn (19), is used to compute the auxiliary potential Φ by the direct integration 
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     Substituting the auxiliary potential Φ to eqns (17) and (21), the pressure and velocity field 
of a particular solution is obtained. 

3.2  System of equations 

Substituting eqns (14) and (15) into eqns (1) and (2), we have got the following M equations: 
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 ∑ 𝛽௝௞ 𝜑൫𝑟௠௝൯ ൌ  𝜌𝑢௞
డ௨೔

డ௫ೖ
,   ெ

௝ୀଵ 𝑚 ൌ 1,2, … , 𝑀. (23) 

     To complete the whole system, we must add N boundary conditions in all boundary nodes 
(see Fig. 2). These additional N equations can be formulated using boundary operator B as 

∑ 𝛽௝௞ 𝐵 ቀ𝑢ത௜௞൫𝑟௠௝൯ቁ ൅ ∑ 𝛼௝௠𝐵 ቀ𝐺൫𝑟௠௝൯ቁ ൅ 𝛼௠௠𝐵ሺ𝑈௠ሻ ൌ 𝑏଴ሺ𝑥௠, 𝑡ሻே
௝ୀଵ,௠ஷ௝

ெ
௝ୀଵ , 

 𝑚 ൌ 1,2, … , 𝑁. (24) 

     The system of linear equations can be written in the following form: 

 ቂ𝑲 𝑳
𝟎 𝑵

ቃ ቄ
𝛼
𝛽ቅ ൌ ቄ𝐛𝟎

𝐒
ቅ, (25) 

where 

 𝐾௜௝ ൌ 𝐵 ቀ𝐺൫𝑟௜௝൯ቁ,    𝐿௜௝ ൌ 𝐵 ቀ𝑢ത௜௞൫𝑟௠௝൯ቁ, (26) 

and 

 𝑁௜௝ ൌ 𝜑൫𝑟௠௝൯,    𝑆௜ ൌ 𝜌𝑢௞
డ௨೔

డ௫ೖ
. (27) 

     The computational algorithm deals with the nonlinearity caused by transport terms 
adopting Pickard iterative scheme together with the variation of right-hand side evaluated 
using transport terms Si (eqn (27)). The part of the equation system eqn (25) used to construct 
a particular solution will be sparse and the system will be computationally more efficient. 
The other effect is that the local nature of kernel functions used to create particular solution 
enables the solution of problems with higher Reynolds number.  
 

 

Figure 2:   The boundary and internal nodes distribution covering the global computational 
domain used for SBMDR method. 

4  SIMULATION OF THE LID-DRIVEN CAVITY PROBLEM 
Lid-driven cavity flow is being used as a standard test case for the validation of numerical 
solutions of incompressible Navier–Stokes flow. The upper wall of the cavity motions with 
a velocity u = 1, and no-slip impermeable boundary conditions are considered along the other 

y
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three walls. The geometry and velocity boundary conditions are demonstrated in Fig. 3. The 
dilemma of this problem remains in the presence of the singularities of the pressure and 
velocity at the two top corners of the cavity. Therefore, the amount of the computational 
nodes utilized decreases towards the corners of the cavity (see Fig. 3) to catch the high 
pressure and velocity function gradients. 
 

 

Figure 3:   The lid-driven cavity problem geometry, boundary conditions, and distribution 
of internal nodes. 

     The steady solution using the SBMDR is achieved when the discrepancy between two 
consecutive time steps (in the definition of the infinity norm) is lower than specified, 
 εtol = 1×10-6 is applied for presented numerical computations. The results of the SBMDR are 
confronted with the solution represented in AbdelMigid et al. [18] for the Reynolds number 
Re = 3200; the vertical velocity components along a horizontal line and the horizontal 
velocity components along a vertical line, straight to the center of the cavity, are plotted in 
Fig. 4. Fig. 5 shows streamlines and pressure contours for Reynolds number of Re = 3200. 
 

 
(a) (b)

Figure 4:   Lid-driven cavity, Re = 3200. (a) Vertical velocity components along horizontal 
line y = 0.5; and (b) Horizontal velocity components along vertical line x = 0.5. 

v y
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Figure 5:  Streamlines and pressure contours for lid-driven cavity problem, Re = 3200. 

5  SIMULATION OF THE BACKWARD-FACING STEP FLOW 
The flow over a backward-facing step is extensively tested arrangement of the fluid flow in 
a channel. A couple of the numerical and experimental studies of the 2D steady 
incompressible flows have been disclosed (e.g. Erturk [19]). The inlet velocity is considered 
to be horizontal with a parabolic distribution, and maximum inflow velocity is umax = 1.5, and 
the average inflow velocity is ua = 1. The Reynolds number could be defined as 

 𝑅𝑒 ൌ
௨ೌு

ఔ
, (28) 

where H is the height of the channel (see Fig. 6). The geometry configuration and boundary 
conditions are shown in Fig. 6. 
 

 

Figure 6:  The geometry of the backward-facing step problem. 

     The entire domain is covered by a uniform distribution of computational nodes, 261 nodes 
in the x-direction and 31 in the y-direction. The primary values of all quantities are set to 
zero. The steady solution is again attained when the tolerance between two consecutive time 
steps is lower than a designated value. 
     Fig. 7 demonstrates streamlines and pressure contours for Re = 800, and Fig. 8 
demonstrates the horizontal velocity components in vertical profiles. Comparing the results 
of the SBMDR for Re = 800 with results of Erturk [19] show the close agreement of the 
proposed formulation. 
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Figure 7:   Stream function contours (streamlines) and pressure contours for the  
backward-facing step, Re = 800. 

 

Figure 8:    Backward-facing step, the horizontal velocities at x = 3 and x = 7 profiles for  
Re = 800. 

6  CONCLUSIONS 
This paper documents the experiment to apply the global SBM and DRM (SBMDR)  
for the solution the incompressible laminar flow outlined by a primitive variable form of 
Navier–Stokes equation. Two types of benchmarking problems, lid-driven cavity and 
backward-facing step, have been successfully tested. This type of boundary collocation 
method seems to be quite a useful alternative to the solutions of incompressible fluid flow 
using the boundary based numerical schemes. The dual reciprocity technique implemented 
using implicitly compactly supported RBFs generates sparse characteristic matrix and 
enables the method to obtain reasonable results even for high Reynolds number. The 
presented numerical code and numerical results need to be more analyzed in the sense of 
precision, convergence and computational demands. 
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