
MESHLESS COLLOCATION METHODS FOR SOLVING
PDES ON SURFACES

MENG CHEN1, KA CHUN CHEUNG2 & LEEVAN LING3

1ASTRI Hong Kong Applied Science and Technology Research Institute Company Limited, Hong Kong
2NVIDIA AI Technology Center (NVAITC), NVIDIA, USA

3Department of Mathematics, Hong Kong Baptist University, Hong Kong

ABSTRACT
We present three recently proposed kernel-based collocation methods in unified notations as an easy
reference for practitioners who need to solve PDEs on surfaces S ⊂ Rd. These PDEs closely resemble
their Euclidean counterparts, except that the problem domains change from bulk regions with a flat
geometry of some surfaces, on which curvatures play an important role in the physical processes. First,
we present a formulation to solve surface PDEs in a narrow band domain containing the surface. This
class of numerical methods is known as the embedding types. Next, we present another formulation
that works solely on the surface, which is commonly referred to as the intrinsic approach. Convergent
estimates and numerical examples for both formulations will be given. For the latter, we solve both the
linear and nonlinear time-dependent parabolic equations on static and moving surfaces.
Keywords: kernel-based collocation methods, elliptic partial differential equations on manifolds,
convergence estimate.

1 INTRODUCTION
Throughout the paper, we use S ⊂ Rd to denote some sufficiently smooth, connected, and
compact surface with bounded geometry with dim(S) = d− 1. All surface functions and
operators are labelled with subscripts S for clarity. In particular, the surface gradient∇S and
the Laplace-Beltrami ∆S operators (a.k.a. the surface Laplacian) can be defined in terms of
the standard Euclidean gradient∇ and Laplacian ∆ operators for Rd via projections:

∇S := (I − nnT )∇ and ∆S := ∇S ·∇S , (1)

where I is the identity operator and n = n(ξ) denote the unit outward normal vector at ξ ∈ S.
For bounded Euclidian domains Ω, we work on the standard Hilbert spaces Hm(Ω) and
Hm−1/2(Ω) with standard Sobolev norms for some integer m ≥ d/2. Sobolev spaces on
surfaces can be defined by Hm(S) := (I −∆S)−m/2L2(S), see [1].

The types of partial differential equations (PDEs) that we concerned are time-independent
strongly elliptic equations on surfaces S ⊂ Rd in the form of

LSuS := (−aS∆S + bS ·∇S + cS)uS = fS (2)

for some surface differential operator LS : Hm(S)→ Hm−2(S) with Wm
∞(S)-bounded

coefficients aS , cS : S → R, and bS : S → Rd. We assume the existence [2] of classical
solutions u∗S to (2) in Hilbert spaces Hm(S).

2 EMBEDDING KANSA METHODS
Methods in this section are variants of Kansa methods [3], [4] that built upon some constant-
along-normal property. They are generalization of the finite difference based closest point
method [5] and its meshfree extension [6]. Firstly, we define the closest point mapping cp

cp(x) = arg inf
ξ∈S

‖ξ − x‖`2(Rd),
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which maps each near-surface point x ∈ Rd onto the nearest surface cp(x) ∈ S. For any
smooth surface S of class Cm+1, we know that [7] the cp map is well-defined in some
narrow-band domain containing S

Ω = Ωδ :=
{
x ∈ Rd : inf

ξ∈S
‖ξ − x‖`2(Rd) < δ

}
(3)

for some constant δ depending only on S and m such that uS ◦ cp ∈ Hm(Ω) for all
uS ∈ Hm(S).

An embedded PDE associated with (2) is in the form of

L := −a∆ + b ·∇+ c in Ω, (4)

with all coefficients in (4) being the cp-extensions of those in (2), i.e. a = aS ◦ cp and etc.
for all x ∈ Ω. The following theorem gives the relationship of operators on S and Ω, and the
solutions of (2) and (4).

Theorem 1. [8, Thm. 2.1] Let S ⊂ Rd be a codimension one C3–smooth, connected
and compact surface with well-defined normal n = n(x) for all x ∈ S. Let u ∈ C2(Ω) ∩
H2+1/2(Ω) be an extension of uS ∈ H2(S) with u|S = uS . Then,

∇Su := ∇u− n∂nu and ∆Su := ∆u−HS∂nu− ∂(2)
n u on S, (5)

where ∂nu := nT∇u, ∂(2)
n u := nTJ(∇u)n and HS(ξ) = trace(J(n)(I − nnT )), which is

d times the mean curvature of S at x, defined using the Jacobian operator J in Euclidean
space. In particular, for any second order differential operator in the form of (2), if u satisfies
the embedding conditions

∂nu = 0 and ∂(2)
n u = 0 on S, (6)

then LSuS = Lu on S.

Note that (4) is simply an elliptic PDE posed in the narrow-band domain Ω. Once we
solve (4) for u with constant-along-normal property, restricting it to the surface yields the
surface solution uS = u|S .

2.1 Numerical algorithms

For the sake of convergence proof, we use kernels Φm : Rd × Rd → R that are translation-
invariant, symmetric positive definite with smoothness m, and satisfy

c(1 + ‖ω‖22)−m ≤ Φ̂m(ω) ≤ C(1 + ‖ω‖22)−m for all ω ∈ Rd, (7)

for some constants 0 < c ≤ C. Commonly used kernels of this sort includes the standard
Whittle-Matérn-Sobolev kernels, that are defined via the Bessel functions of the second kind
in the form of

Φm(x) := ‖x‖m−
d
2

2 Km− d2 (‖x‖2) for all x ∈ Rd, (8)

and the class of compactly supported piecewise polynomial Wendland functions [9].
Let Z = {z1, . . . , znZ} ⊂ Ωδ denote a discrete set of trial centers in the narrow-band

domain with radius δ in (3) and we define the corresponding finite-dimensional trial space by

UZ,Ω,Φm := span{Φm(·− zj) : zj ∈ Z},
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that is a subspace of the native space NΩ,Φm of Φm [10], [11]. On the test side, we pick any
discrete set X = {x1, . . . , xnX} ⊂ S of sufficiently dense collocation points (with respect to
Z) on the surface.

Under this surface-version setup for overdetermined Kansa methods [12], a convergent
numerical solution [8, Thm. 4.1] is defined by

arg inf
u∈UZ,Ωδ,Φm

(
‖Lu− f‖2`2(X)︸ ︷︷ ︸

PDE collocations

+ ‖∂nu‖2`2(X) + ‖∂(2)
n u‖2`2(X)︸ ︷︷ ︸

Embedding conditions

+hεX ‖u− u|S ◦ cp‖2`2(Z)︸ ︷︷ ︸
Stability conditions

)
,

(9)
for some m > 5/2 + d/2, ε > 0, and with the mesh norm of X defined by the shortest
distance function dS : S × S → R on S as

hX := sup
ξ∈S

min
x∈X

dS(x, ξ).

Note that the Euclidean differential operator L in (9) is evaluated only at X ⊂ S. It
is unnecessary to cp-extend any coefficients of LS away from S. The (3nX + nZ)× nZ
overdetermined linear system in (9) can be expressed in matrix form as

LΦm(X,Z)
∂nΦm(X,Z)

∂
(2)
n Φm(X,Z)

hεX
(
Φm
(
Z \ S, Z

)
− Φm

(
cp(Z \ S), Z

))
λ =

 f(X)
0
0
0

 , (10)

in which all differential operators act on the first argument of Φm. Solving (10) in the least-
squares sense yields the unknown coefficient λ = {λi}nZi=1. The Kansa solution can then be
evaluated everywhere on S by

U =
∑
ζi∈Z

λiΦm( ·, ζi). (11)

An error estimate for this solution is

‖U − u∗S‖Hk(S)

≤ C(h
m−k−1/2
Z + δ1/2h2−k

X h
m−2−d/2
Z + δh

d/2−k+3/2+ε
X hm−dZ )‖u∗S‖Hm(S) (12)

for any k ≥ 2 and m > k + d/2 + 3/2. By examining the right-hand side of this estimate,
we see that using δ ≈ hZ is a reasonable choice for the radius of the narrow-band domain Ω.

Numerical evidence in [8] suggests that a reduced system by dropping the stability
conditions in (9) has better numerically robustness when the set of collocation points X is
not dense enough to fulfil the theoretical requirement, i.e., when hX is larger then the theory
allows. That is, we can solve the reduced 3nX × nZ overdetermined linear system LΦm(X,Z)

∂nΦm(X,Z)

∂
(2)
n Φm(X,Z)

λ =

 f(X)
0
0

 , (13)

for λ instead. In cases when the convergent theory applies, accuracy of (10) and (13) are
nearly identical. For this reason, our numerical demonstration in the latter section will focus
on the reduced system (13) instead.
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3 INTRINSIC KANSA METHODS
Let the notation Z be redefined and reused. In this section, we are going to use a trial space
defined solely on the surface S (instead of in some narrow-banded domain). Thus, we need a
set of trial centers Z = {z1, . . . , znZ} ⊂ S to be defined on the surface. We still require the
kernel to satisfy the decay condition (7) with smoothness order m.

Under the assumption in [13], [14] that m > d/2, we can obtain surface kernels

Ψm−1/2(· , ·) := Φm(· , ·)|S×S : S × S → R

that reproduce Hm−1/2(S) simply by restricting the global kernels Φm on S. The surface
kernel here severs theoretical purpose and, in actual implementation, we are using the global
kernel Φm of our choice.

Within the corresponding trial space, which is the span of translations of Ψm−1/2, i.e.,

UZ,S,Ψm−1/2
:= span{Φm (· − ξ) | ξ ∈ Z}, (14)

we define an intrinsic least-squares solution by

U = arg inf
u∈UZ,S,Ψm−1/2

‖LSu(ξ)− f(ξ)‖2`2(X) (15)

for some sufficiently dense set of collocation points X ⊂ S. In [15], we show that the
numerical solution U of (15) satisfies the estimate

‖U − u∗S‖Hk(S) ≤ Ch
m−d/2
Z

(
h−kZ + h−k+2

X h−2
Z

)
‖u∗S‖Hm−1/2(S), (16)

for k ≥ 2 and m > k + d/2 + 1 for any u∗S ∈ Hm−1/2(S). Effectively, the intrinsic
approach lower the smoothness requirement on the exact solution u∗S by a half.

Note the presence of surface differential operator LS in (15), on which some extra
analytical or numerical treatments are required.

3.1 Numerical algorithms

Some readers may be unfamiliar with surface differential operators. We begin with a simple
example to demonstrate how one can collocate LS analytically.

3.1.1 Example
Let S ∈ R3 be the unit sphere. We consider the differential operator LS = ∆S − 1 ·∇S .
Firstly, we compute the orthogonal projection operator

P = I − nnT =

−x2 + 1 −xy −xz
−xy −y2 + 1 −yz
−xz −yz −z2 + 1

 .
Let Pk denotes the kth column of P . Using the fact that

∇Su = P∇u =

P1 ·∇
...

Pd ·∇

u,
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and
∆Su = (P∇) · (P∇)u = trace

(
P · JT (∇Su)

)
,

we can express the surface operator entirely in Cartesian coordinates after some symbolic
manipulations as

LS =
(

(x− 1)2 + x(y + z)− 2
) ∂
∂x

+
(

(y − 1)2 + y(x+ z)− 2
) ∂
∂y

+
(

(z − 1)2 + z(x+ y)− 2
) ∂
∂z

+
(
− x2 + 1

) ∂2

∂x2
+
(
− y2 + 1

) ∂2

∂y2
+
(
− z2 + 1

) ∂2

∂z2

−2xy
∂2

∂x∂y
− 2xz

∂2

∂x∂z
− 2yz

∂2

∂y∂z
,

which no longer has any implicit dependency on S and can be used for collocation. We can
solve (15) by solving the following nX × nZ overdetermined system

LSΦm(X,Z) λ = f(X) (17)

for λ in the least-squares sense. The numerical solution is given as in (11).
The above analytic approach works as long as we have analytic formula for the normal

vector n of the surface, which is the case when S is given by some parametric formula or
level set method. In cases when this is not so, i.e., when S is defined by a point cloud, we can
opt for a pseudospectral approximation [16] and here is how.

We assume n(z), for all z ∈ Z, is known either a priori or by some approximations [17],
[18]. Without explicitly knowing the function values of any surface function uS at Z, we can
still express the interpolant IZu of u in the trial space UZ,S,Ψm−1/2

as

IZuS = [Ψm−1/2(·, Z)][Ψm−1/2(Z,Z)]−1uS(Z).

Since Z ⊂ S, we have Ψm−1/2(Z,Z) = Φm(Z,Z) and no special treatment is required on
the global kernel. The idea of pseudospectral is to approximate derivatives of uS by that of
IZuS . For surface gradient, we have

∇SuS ≈ ∇̃SuS := ∇S(IZuS) =

P1 ·∇
...

Pd ·∇

 (IZuS).

One can, see [16] for details, write the kth component of∇S(IZuS) in the form of

[∇̃SuS ]k =
(
PTk [∇Φm(· , Z)][Φm(Z,Z)]−1

)
︸ ︷︷ ︸

=:Gk( · ,Z)

uS(Z). (18)

We need all these 1× nZ vector function Gk to apply another round of pseudospectral for
the surface Laplacian operator, namely

∆SuS ≈ ∇̃S ·∇S(IZuS)(Z),
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in which the gradient of uS is approximated, then evaluated, at Z. This specific choice allows
simplification for a simple formula

∆̃SuS =
d∑
k=1

Gk(·, Z)Gk(Z,Z)uS(Z).

At this point, we can collocate at some set of collocation points X ⊂ S to yield an nX × nZ
overdetermined matrix system[

a
d∑
k=1

Gk(X,Z)Gk(Z,Z) + bTG(X,Z) + cΦm(X,Z)Φ−1
m (Z,Z)

]
uS(Z) = f(X)

(19)
for unknown u(Z). By the relationship λ = Φ−1

m (Z,Z)uS(Z), which appears in all terms in
the form of Gk( · , Z)uS(Z), we can cast the system in terms of unknown λ easily.

4 NUMERICAL EXAMPLES
We provide some numerical demonstrations using the (global) Whittle-Matérn-Sobolev
kernels of order m as in (8). The first example will provide readers a sense of convergence of
the methods in this paper. The next two aim to show how the methods can be applied in other
applications, namely, solving surface pattern formation problems and convection-diffusion
equations on moving surfaces. We denote our methods as follows:

Method 1: Embedding Kansa method as in (13),

Method 2: Approximated collocation method as in (19),

Method 3: Direct collocation analytically as in (17).

Sets of nodes X and Z are both quasi-uniform with some oversampling ratio hZ/hX
based on fill distances. Having a specific number of points quasi-uniformly distributed on a
surface is not an easy task that worths to be solved exactly. In our computations, we simply
enforce hZ = γhX so that the oversampling ratio γ is roughly equal to some preassigned
value.

4.1 Convergence rates and accuracy

We solve the surface elliptic PDE (2) with aS = cS = 1 and bS = 0. Let the exact solution
be

u∗S = (x+ y + z) exp (−x(x− 1)− y(y − 1) + z)

defined on a constant distance product (CPD) surface√
(x− 1)2 + y2 + z2

√
(x+ 1)2 + y2 + z2

·
√
x2 + (y − 1)2 + z2

√
x2 + (y + 1)2 + z2 = 1.1.

We apply all methods with an oversampling ratio of γ ≈ 1.4. Fig. 1 shows the error
distributions on the surface obtained by Method 3 with m = 4. In Fig. 2, the L2(S) and
H2(S) error profiles with the kernels of order m = k + d/2 + 1/2 = 4 and m = k + d/2 +
3/2 = 5 are plotted respectively. Note that the former m is below what error estimates (12)
and (16) call for. All subfigures were made with the same scale for easy comparison.
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Figure 1: Error functions, obtained by Method 2 with the oversampling collocations: hZ ≈
1.4hX ≈ 0.02 and kernels of smoothness order m = 4.

Clearly, kernels with smoothness order below the theoretical requirement for the error
estimates, i.e., m = 4, remain practical. In terms of accuracy, errors of Method 3 the best
among the three. With our smooth solution, larger value ofm is also beneficial to all methods
in terms of accuracy. The H2(S)-error convergence rates of Method 1 are close to the
predicted ones (m− 2.5) in theory. Though the theoretical rate (m− 3.5) for Method 3 is
lower compared with Method 1, it achieves higher orders of convergence in this example.
Convergence rate of Method 2 sits between those of both approaches, which justifies our
choice of approximation methods to the surface differential operators.

4.2 Pattern formation on surfaces

In this section, we solve a system of coupled reaction-diffusion equations for pattern
formations on surfaces. In general, a specific pattern can be obtained by solving the following
equations: 

∂u

∂t
= δu∆Su+ fu(u, v),

∂v

∂t
= δv∆Sv + fv(u, v),

(20)

where u and v are the activator and inhibitor of the system. In particular, we select fu(u, v) = αu(1− τ1v2) + v(1− τ2u),

fv(u, v) = βv

(
1 +

ατ1
β
uv

)
+ u(γ + τ2v),

(21)

as the reaction terms in (20). In this numerical experiment, we generate two different patterns
on a Torus Knot. The non-linear problem (20) is solved by Method 1, which replaces the
surface Laplacian operator with traditional Laplacian with two additional constraints. After
converting the surface PDE to its embedding space, we solve the embedded PDE by a second-
order semi-implicit backward differentiation formula (SBDF2) until the solution reaches
steady state. In Fig. 3, we show the steady-state solutions of (20) with two different sets
of parameters (α, β, τ1, τ2); one for a spot pattern and the other for some stripe pattern. It
is convincing that our method is a robust alternative for pattern formation problems. The
simulation was implemented by MATLAB parallel computing toolbox. The computation time
using a consumer-graded NVIDIA GeForce GTX 1080 took around 204 seconds to attain its
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(a) m = 4

L2(S) H2(S)

E
rr

or
s

hZ

Method 1 (2.01)
Method 2 (3.31)
Method 3 (3.62)

(1.47)
(2.67)
(3.15)

(b) m = 5

L2(S) H2(S)

hZ

E
rr

or
s

(3.33)
(3.55)
(5.64)

(2.13)
(3.05)
(4.16)

Figure 2: For the kernels of (a) m = 4 and (b) m = 5, the L2(S) and H2(S) error profiles
with convergence rates listed in legends by using our three methods, based on the
same seven pairs of X and Z (hZ ≈ 1.4hX ).

steady state solution while it took 4228 seconds on CPU. Such 20X speed-up is done simply
by adding few lines of codes to convert the system matrix to GPU Array.

4.3 Merging surfaces by curvature motion

Let the evolving surface with time t ∈ [0, T ] be denoted as S(t). In this test, initial surfaces
are two spheres of radius 0.72 on the upper left side and 1.8 on the lower right side, shown
in Fig. 4. First, we let they approach to each other at velocities v =

√
2

2 (1, 0,−1) and −v
respectively. Then they collide at t = 0.01 to generate a new closed and smooth surface, see
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Figure 3: Steady state solutions of the reaction diffusion equation obtained by Method 1.

Fig. 5(a). The merged surface further evolved under geometric motion v = −κn by the mean
curvature κ = ∇S · n, see [19]. Along the evolution, we compute point clouds by the method
in [20].

Now, on S(t), we want to solve convection-diffusion equations

∂tu+ v ·∇u+ (∇S · v)u−∆Su = 0 on S(t)× [0, T ], (22)

subject to some Dirichlet initial conditions. In (22), vector v denotes the velocity of surface
motion.

We first discretize (22) by the Crank-Nicolson (CN) method in time. Then, we apply
Method 2 in space to solve the discretized problem and complete the time stepping. Note
that Method 3 is not appropriate for this problem due to the lack of analytical information.
Implementing Method 1 also involves certain difficulties, e.g., the high curvature occurring
right after the merge poses a constraint and we must use some very narrow-band domains.

At each time step before merging (t < 0.01), we respectively solve the problem (22) on
both spheres, via our oversampled Method 2 to the time semi-discretized problem. We employ
kernels of low order of smoothnessm = 2.5 and the time step size is set to be4t = 0.001. At
the moment of merging at t = 0.01, the numerical solutions at merged points are obtained by
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t
=

0

@@Rv

@@I
−v

Figure 4: The initial conditions (color) with nX = 567, nZ = 365 totally on two merging
different spheres at constant velocities v =

√
2

2 (1, 0,−1) and −v (arrow).

�
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�
��	
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���

��	
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��	

(a) t = 0.01

v = −κn

(b) t = 0.2

(c) t = 0.6 (d) t = 1

Figure 5: The corresponding snapshots of numerical solutions (color) with evolving velocity
(arrow) at several time points, obtained by Method 3 with CN, using nX = 666,
nZ = 427,m = 2.5 and4t = 10−3 with the same scalars of color and coordinates
as in Fig. 4, on a mean-curvature evolving surface.

interpolation in Fig. 5(a). After then, we use approximated normal vectors to simulate mean-
curvature motion. Numerical results of (22) obtained by Method 3 at three times t = 0.2, 0.6
and 0.1 are color mapped in Fig. 5(b)–(d) respectively.
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5 CONCLUSION
This paper reviews three alternatives for solving surface PDEs. We focus on surfaces with
codimension one for simplicity; all methods in this paper can be easily generalized to higher
codimensions. In our presented example, we see some higher than predicted convergence
rates, which is not uncommon to see in Kansa-type methods for surface PDEs. Generally
speaking, convergence rate will gradually slow down to the predicted one as the surface
curvature increases. Although all presented methods are global (because we have rigorous
convergence theorems), we want to point out to our readers that there are many local meshfree
methods that solve surface PDEs. Readers are recommended to include those in consideration
before pinpointing their method of choice.
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