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ABSTRACT 
Boundary element analysis of thin-walled structures using a new expanding element interpolation 
method is presented. The element is obtained by adding virtual nodes based on a traditional 
discontinuous element. Coupled with the virtual nodes, the shape functions become higher order shape 
functions and are named fine shape functions. The original shape function of the discontinuous element 
is named raw shape function. With the expanding element, the interpolation accuracy can be increased 
by at least two orders compared with the original discontinuous element. The elements are able to 
naturally and accurately interpolate both continuous and discontinuous fields. The virtual nodes can be 
obtained by those of adjacent source points using the raw shape functions. Furthermore, the boundary 
integral equations are built up only at the inner nodes. Thus the size of the equations has not changed. 
Numerical examples are presented to verify our methods. Results demonstrate the accuracy and 
efficiency of the proposed method. 
Keywords:  boundary element method, expanding element, boundary integral equations. 

1  INTRODUCTION 
Accurate and efficient analysis of super thin structures is of crucial importance in engineering 
applications [1], [2]. The boundary element method (BEM) [3]–[9] has become recently an 
attractive alternative for problems in computational mechanics, and has been widely used to 
solve the problems of computational mechanics. Compared with the FEM, the BEM is a 
boundary method. BEM has evident advantages for solving problems such as linear elasticity 
[10], crack propagation [11], acoustics and contact problem [12], [13], and so on. In modern 
daily industrial settings, mesh preparation is the most labour intensive in numerical 
modelling, particularly for the FEM. The BEM needs not to deal with the interior mesh, so it 
is more effective in mesh preparation. In addition, the FEM requires the trial functions  
C0-continuous, but the BEM does not require that. In addition, the BEM has the advantages 
of dimensionality reduction and high accuracy of calculation. In view of the above 
observations, we can know that the BEM is a more suitable method to analyse thin-super thin 
structures since the BEM just requires one to discretize the boundary and the stress can be 
accurately calculated. Then combined with the advantages of BEM, the super thin structure 
can be accurately approximated. 
     At present, there are mainly two kinds of implementation for the BEM [14], one is to use 
discontinuous element interpolation, and the other is to use continuous element interpolation. 
In the specific numerical realization process, the discontinuous element configures the node 
inside the element, which provides convenience for the realization process, which simplifies 
the system equation and reduces the difficulty of grid generation, but increases the calculation 
of the whole system equation. The continuous element directly arranges the points on the 
geometric vertices of the element. The number of nodes is less than the number of non-
continuous nodes under the same order, and the calculation amount is small. However, in 
some cases, there are still some difficulties in processing the corner points [15]. 
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     In this paper, a new expanding element is proposed to synthesize the discontinuous and 
continuous element. The proposed element has all the advantages of previous element and 
overcoming their disadvantages, improving the interpolation accuracy at least by two without 
changing the degrees of freedom of the equation. Finally, a universal method is proposed to 
solve the near-singular integral of the thin structure, that is, the integral element is 
continuously subdivided according to the position of the source point, and each time 
subdivided into two identical sub-elements. Through this method, the near-singular integrals 
in thin structures can be accurately calculated. 
     The structure of the paper is as follows. Section 2 is to introduce the proposed element 
interpolation method. In Section 3, the new numerical implementation of BIE is described. 
Section 4 gives some numerical examples. Section 5 is the conclusions. 

2  THE EXPANDING ELEMENT INTERPOLATION METHOD 

2.1  The expanding elements 

The expanding element is obtained by adding virtual nodes on the traditional discontinuous 
element. These elements have two kinds of shape functions: raw and fine shape function. As 
shown in Fig. 1, the two shape functions of the constant expanding element are as follows: 
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where rN , 1
fN , 2

fN  and 3
fN  denote the raw and fine shape function, respectively. 

 

 

Figure 1:  Constant, linear and quadratic expanding element. 

2.2  Introduction of the new interpolation method 

Firstly, we will dentally introduce the method of the calculation of the values of the virtual 
nodes (considering the example in Fig. 2). 
     When the expanding element is used to interpolate the known boundary conditions, the 
value of the virtual node is directly equal to the boundary conditions. When the expanding 
element is used to interpolate unknown boundary conditions, the node values of the virtual 
nodes can be obtained by the extrapolation of the raw shape functions. 
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Figure 2:  The geometric model for different boundary variables. 

     When the proposed method is used to interpolate the discontinuous boundary variables, 
we collocate two virtual nodes at a vertex shared by two adjacent elements. The nodal values 
of virtual nodes are calculated by eqn (3) 
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     In this way, the discontinuous boundary conditions can be kept accurate. And for 
continuous fields (displacement boundary conditions), eqns (4) and (5) can be used 
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     After getting the values of virtual node, the physical variables in the BIE can be obtained 
by interpolating by the fine shape functions. So the u and t on the right edge can be  
obtained by 
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Eqn (6) can be further written as 
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     From above introduction, when the boundary condition is known, the value of the virtual 
node is directly equal to the boundary condition or directly obtained by extrapolation of the 
raw shape functions. As the degrees of freedom of the virtual nodes need to be eliminated by 
the source points, thus and the size of the matrix equation does not change. Moreover, no 
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matter discontinuous and continuity boundary variables, the expanding elements can also 
approximate accurately. 

3  NUMERICAL IMPLEMENTATION OF BIE 

3.1  Nearly singular integration 

Accurate and efficient calculation of nearly singular integrals is the key to numerical 
calculations. In this part, we proposed an adaptive element subdivision method to solve 
nearly singular integrals. First we need to calculate the side length l of the integral element, 
and then calculate the distance d from the source point to the center of the element. In the 
global coordinate system, when l is less than d, the integral of the element is a regular integral. 
Otherwise, the element is divided into two equal sub-elements (see Fig. 3). By using this 
method, the nearly singular integral can be accurately calculated, and no integral 
transformation is needed, and that is easily to implement. 
 

 

Figure 3:  The method of element subdivision. 

3.2  Numerical implementation 

The well-known BIE for the solution of 2D linear elasticity problem in a bounded by   is 

 * *( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )c P u P q P Q u P d Q u P Q q P d Q
 

     , (8) 

where P  and Q  are the source and the field point, respectively. The Kelvin fundamental 

solutions * ( , )iju P Q  and * ( , )ijt P Q  are given by: 
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where μ and v are the shear modulus and the Poisson’s ratio, respectively. r is the distance 
between the source and field point. 
     Eqn (8) is discretized with N expanding elements. The discretized equations for BIE can 
be obtained 
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Eqn (11) can be expressed in a matrix form as 

 ,Hu Gt  (12) 
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where vectors u and t consist of all nodal displacement and traction. H and G are shown as 
follows: 

 *( , ) ( ) ( ),
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     Distinguishing the different boundary conditions, eqn (12) can be further written as 

 

s s

s s
s s v v s s v v

v v

v v

   
   
            
   
      

u t

u t
H H H H G G G G

u t

u t

, (15) 

where us , t s , uv , t v  and us , ts , uv , tv are the known and unknown boundary variables 
of the source points and virtual points, respectively. 
     From 2.2, we can see that the relationship of source points and virtual points are as 
follows: 
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     Using eqn (16), eqn (15) can be written as 
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     Matrix A is a square matrix of order n; x is unknown at the source points; f is the known 
vector on the right-hand side. 
     From eqns (17)–(20), one can see that the degrees of freedom of the virtual nodes are 
eliminated by the source points, so the size of the system equation does not change. This 
point is the main advantage of the proposed method. 

4  NUMERICAL EXAMPLES 
To verify the advantages of the proposed method for thin-walled structures, a few illustrative 
numerical results are given in this section. In the following examples, e represents relative 
errors and n stands for the number of the nodes 

 num exact

1max

1 1
( )

N

i i
i

e u u
u N 

  . (21) 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLII  29



     In all figures, ExpdConst, ExpdLinear, ExpdQuad, TradConst, TradLinear, and TradQuad 
represent the proposed expanding elements and traditional continuous elements (constant, 
linear, quadratic elements) interpolation methods with different orders, respectively. 

4.1  Example 1: Concentric circles subject to a displacement field problem 

In this case, the proposed method is used to analyze a thin coating on a shaft, and the 
geometry model is as shown in Fig. 4 (these radii are r1 and r2, respectively). The thickness 
of coating is h (varies in the range of 1 6

1 110 10r r  ). It is subject to the boundary conditions 

of eqn (22). Plane strain case with E = 1, v = 0.25 (in consistent units). 60 nodes are used on 
each boundary. The relative errors and convergence rates of ty are shown in Figs 5 and 6. 

 3 2 3 23 ,   3x yu y yx u x xy     . (22) 

     It can be seen from Figs 5 and 6, when the thickness of the coating becomes smaller, the 
results by using the traditional element interpolation method are not correct, and that is 
difficult to improve the accuracy with too many nodes. Overall, when the coating is gradually 
thinned, the accuracy of using the proposed method is significantly higher and the 
convergence is better than the conventional discontinuous element interpolation method. 
 

 

Figure 4:  The simplified geometry model. 

 

Figure 5:  The relative errors of ty on the boundary of the inner circle. 
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Figure 6:  The convergence of ty on the boundary of the inner circle for h/r1 = 10-6. 

4.2  Example 2: cantilever beam 

The expanding element interpolation method is also studied in the cantilever beam problem. 
Consider a beam of length L = 10 and 100, respectively, height h = 1, E = 1.1×105, v = 0.25, 
subjected to a parabolic traction at the free end with P(y) = 1.0 (as shown in Fig. 7). The 
analytical solution of the displacement is given by 
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and 50 elements are used on edge ab and cd, respectively. On edge ad and bc, we collocate 
only one element. The results of uy on the edge ab, together with the analytical solution are 
shown in Fig. 8. To study the accuracy and convergence rate, a series number of nodes are 
used to research that and the results are shown in Fig. 9. 
 

 

Figure 7:  Cantilever beam problem. 
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(a) (b)

Figure 8:  The uy along the edge ab. (a) L = 10; (b) L = 100. 

 
(a) (b)

Figure 9:  Convergence of uy on the edge ab. (a) L = 10; (b) L = 100. 

     From Figs 8 and 9, one can see that the accuracy and astringency rate by proposed method 
are higher than those by traditional elements interpolation method. The advantages of the 
proposed method are demonstrated again. 

4.3  Example 3: structures with negative Poisson’s ratio 

To verify the universality of the proposed method, in this example, the proposed method is 
used to analysis a negative Poisson’s ratio structure. Plane strain case with P = 1 Mpa,  
E = 1,000 MPa, Poisson’s ratio v = 0.25. The corresponding geometric parameters are given 
as follows: structure length l = 90, height h = 60, t = 2 as shown in Fig. 10. 
     “ExpdQuad684” and “FEM1650” in Fig. 11 represent to use 684 and 1,650 nodes with 
different methods, respectively. The result of uy on the edge a are as shown in Fig. 11. The 
result of 3,232,854 nodes by the FEM is taken as the reference solution. The von Mises stress 
by the proposed method and the FEM are as shown in Figs 12 and 13, respectively. 
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Figure 10:  The geometric model of the structures. 

 

Figure 11:  uy on the edge a. 

 

Figure 12:  The result by using the proposed method with 1,140 nodes. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

Boundary Elements and other Mesh Reduction Methods XLII  33



 

Figure 13:  The result by using the FEM with 3,232,854 nodes. 

5  CONCLUSIONS 
This paper has presented a boundary element analysis of super thin structures using the 
expanding element interpolation method. Compared with FEM, there is no need for any 
assumptions in the BEM, and high accuracy can be obtained without using large numbers of 
elements. The proposed method not only has all the merits of the discontinuous element, but 
also guarantees the interelement continuity of field variables. Both continuous and 
discontinuous fields can be accurately interpolated by the proposed method. Moreover, as 
the degrees of freedom of the virtual nodes need to be eliminated, the size of the matrix 
equations does not increase. Results demonstrate that the proposed method possesses 
satisfactory accuracy and convergence rate compared with the traditional method. Extending 
our method to solve three-dimensional problems is ongoing. 
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