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ABSTRACT 
This study presents a numerical scheme for the fatigue crack growth modelling in plane 
nonhomogeneous structural systems. The structural domain is assumed as composed of piecewise 
homogeneous isotropic materials. The high-cycle fatigue case is assumed. Consequently, the linear 
elastic fracture mechanics theory is utilized. The mechanical behaviour is represented by the dual 
boundary element method (DBEM), in which singular and hypersingular integral equations are applied. 
The DBEM is an efficient and robust numerical technique for crack propagation analyses, especially 
due to the non-requirement of the domain mesh. This aspect enables the accurate representation of the 
elastic fields around the crack tip and simplifies the remeshing process during the crack propagation. 
The singular integrals are evaluated through the singularity subtraction method. Third degree 
polynomial transformation is utilized for improving the accuracy of near-singular integrals. The 
interface between adjacent materials is assumed as perfectly bonded and the sub-region BEM approach 
is utilized for representing the nonhomogeneous bodies. The Paris’ law is utilized for determining the 
crack growth rate. The stress intensity factors are assessed by the J-integral and the maximum 
circumferential stress theory is adopted for defining the crack propagation angle and the range of 
equivalent stress intensity factor. The structural life is determined by a special scheme, which is based 
on discrete crack increments. One application is presented to illustrate the efficiency of the proposed 
model in simulating the fatigue crack growth in multiple cracked structures. 
Keywords:  fatigue, multiple crack growth, coalescence, dual boundary element method, 
nonhomogeneous domains. 

1  INTRODUCTION 
The application of materials with dissimilar mechanical properties in nonhomogeneous 
structural systems has recently increased in several engineering fields. In this type of 
typology, the best mechanical feature of each material is explored, resulting in better 
structural performance. However, the materials contain inherent flaws at some level of its 
microstructure. Thus, under oscillating stresses, such flaws may join to form a crack, which 
in turn may grow and lead to the mechanical failure. This phenomenon is known as fatigue 
and it is a main concern regarding structures subjected to cyclic loading. Fatigue failure may 
occur even if the stresses along the material are below its static tensile strength. Therefore, 
this type of collapse is sudden, i.e., without previous notice, and usually catastrophic. Hence, 
the proposition of models to analyse accurately fatigue crack growth problems and to predict 
the structural life of nonhomogeneous structures is a priority in engineering design. 
Moreover, these models must consider the influence of different material properties during 
the crack propagation through the structure and the interaction between cracks to represent 
reliably general and complex problems. 
     The mechanical analysis of cracked nonhomogeneous structures has been performed 
experimentally [1], [2]. However, the robust mechanical modelling of this problem requires 
numerical methods because of the complexity involved into the material discontinuities 
description in addition to the boundary conditions. In spite of domain mesh methods are 
utilized in this field, such as the finite element method [3] and the extended finite element 
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method [4], the boundary element method (BEM) is the proper numerical method for 
handling such mechanical problem. The BEM was accurately utilized for assessing the stress 
intensity factors (SIF) in cracked nonhomogeneous bodies by [5], [6]. Afterwards, improved 
BEM models, based on the dual BEM (DBEM) formulation, enabled the simulation of 
multiple crack propagation and coalescence phenomena [7], [8]. However, the studies 
considering multiple crack growth in nonhomogeneous bodies are scarce in the literature, 
which justifies the development of the present research. 
     In the present study, a numerical model to simulate the fatigue crack growth in multiple 
cracked nonhomogeneous bodies is presented. The DBEM is utilized to assess the structural 
mechanical behaviour. The material of each subdomain, which compose the 
nonhomogeneous structural system, is considered as homogeneous and isotropic. The sub-
region formulation of the BEM is applied for coupling the entire domain. The interface 
between adjacent materials is assumed as perfectly bonded and delamination is not addressed. 
The proposed approach is capable for simulating the coalescence phenomenon and the crack 
intersection with the external boundary and with the materials interfaces. The Paris’ law is 
utilized to obtain the crack growth rates and the SIF are evaluated through the J-integral 
technique. The crack propagation angle is determined by the maximum circumferential stress 
criterion. An especial methodology is proposed for defining the structural life, which 
accounts for discrete crack growth increments. One application is utilized to demonstrate the 
robustness of the proposed numerical approach. 

2  THE DUAL BOUNDARY ELEMENT METHOD 
Consider a plane, homogeneous and linear elastic domain   with boundary  subjected to 
static loads. Using the Betti’s reciprocal work theorem and disregarding the body forces, the 
displacements iu  at an internal point s  of this domain are obtained from the displacements 

ju  and tractions jp  at the boundary as follows: 

* *( ) ( , ) ( ) ( , ) ( ) ,i ij j ij ju s U s f p f d P s f u f d
 

     (1) 

where *
ijU  and *

ijP  are, respectively, the displacement and traction fundamental solutions, 

which are functions of the distance r between the source point s and the field point f at the 
boundary. 
     By differentiating eqn (1) with respect to the internal point, then using the strain-
displacement relation and finally applying the Hooke’s law, the equation that define the stress 
components jk  at the point s is obtained, which is given by: 

* *( ) ( , ) ( ) ( , ) ( ) ,jk ijk i ijk is D s f p f d S s f u f d
 

     (2)

where *
ijkD  and *

ijkS  are fundamental solutions obtained from the derivatives of *
ijU and *

ijP , 

respectively, which are also functions of r. 
     Eqns (1) and (2) contain regular integrals. Moreover, such equations enable the 
computation of the elastic fields at the internal points because the displacement and traction 
components at the boundary are known. To define such components, i.e. at the boundary, the 
source point s is taken to the boundary. By performing this limit process with eqn (1), the 
displacement boundary integral equation (DBIE) is determined as follows: 

* *( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( ) ,ij j ij j ij j ij jc s u s c s u s P s f u f d U s f p f d
 

       (3)
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where ijc  is a coefficient resulting from the limit process on the integral containing *
ijP , 

which is equal to 2ij  for s at the smooth boundaries, being ij  the Kronecker delta. The 

point s  refers to a potential source point at the same position of s but at different surface. 
This occurs, for instance, for source points at opposite crack surfaces. When s does not have 
a corresponding point, the s term in eqn (3) is nil. 
     Similar limit process is performed with eqn (2). Then, using the Cauchy’s formula, the 
traction boundary integral equation (TBIE) is obtained. For the source point at smooth 
boundaries, the TBIE is given by: 

* *1
( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ,

2
j j k ijk i k ijk ip s p s n s S s f u f d n s D s f p f d

 
          (4)

where kn  are the components of the normal versor to the boundary at the source point. 
     Eqns (3) and (4) contain improper integrals because the fundamental solutions present 
different types of singularity as r approaches zero. The weak singularity, of order  ln r , 

occurs in *
ijU ; the strong singularity, of order 1 r , is observed in both *

ijP  and *
ijkD ; and the 

hypersingularity, of order 21 r , occurs in *
ijkS . Therefore, the kernels with strong singularity 

and hypersingularity must be evaluated in the sense of Cauchy principal value and Hadamard 
finite part, respectively. 
     In this study, the algebraic system of equations is obtained via DBEM by the numerical 
evaluation of eqns (3) and (4) [9], [10]. The boundary  is subdivided into isoparametric 
elements with polynomial approximation. High order boundary elements are available. The 
boundary elements contain the collocation points, which are used as source points of the 
integral equations. The TBIE is applied to the discretization along one of the crack surfaces, 
whereas the DBIE is applied to the opposite crack surface and to the external boundary. 
     The numerical integration is performed with the standard Gauss–Legendre quadrature 
when the integrated element is far from the source point, because such integrals are regular. 
The Telles’ third degree polynomial transformation [11] is utilized when integrating near 
singular elements. To integrate the singular elements, i.e. elements that contain the source 
point, the singularity subtraction method is utilized. Discontinuous or semi-discontinuous 
elements are utilized for ensuring smooth boundary at collocations points and for enforcing 
the boundary conditions discontinuity between adjacent elements. In those elements, both or 
just one of the collocation points at the end are placed inside the element, respectively. 
Moreover, the existence of the Hadamard finite part in the TBIE requires the continuity of 
the displacement derivatives at the collocation points, which is guaranteed with 
discontinuous elements. Therefore, this type of element is also utilized to model the crack 
surfaces. 
     In the proposed model, the nonhomogeneous structural system is composed of piecewise 
homogeneous materials, which are interconnected by interfaces. To model this mechanical 
condition, the sub-region BEM technique is utilized. Thus, each subdomain is composed 
exclusively of one material. Hence, the global mechanical problem is assembled by enforcing 
compatibility of displacements and equilibrium of forces along the adjacent subdomains. 

3  LINEAR ELASTIC FRACTURE MECHANICS 
The Linear Elastic Fracture Mechanics (LEFM) has been widely applied in fatigue 
modelling. Particularly, for determining the crack growth rate under oscillatory loading. This 
theory assumes that the inelastic process zone ahead of the crack tip is small in comparison 
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with the crack length or even with other dimensions of the cracked body. Such behaviour 
resembles high-cycle fatigue problems, in which the strains developed within the structure 
are predominantly elastic. According to the LEFM theory, the stress field around the crack 

tip in a homogeneous material develops a singularity of order 1 2r  as r  approaches zero. In 
addition, as for cracks near the interface, the stress field can have others orders of singularity 
[12]. Therefore, the use of the stress components in this region for analysing crack stability 
becomes compromised. Alternatively, the so-called stress intensity factors (SIF) are used to 
assess the crack stability for enabling fully description of the stress field near the crack tip. 
In plane problems, two values of SIF associated with the basic modes of fracture are defined: 

IK , related to opening mode, or mode I, and IIK , related to the sliding mode, or mode II. 
     In the present study, the fatigue model utilized for assessing the structural life is the Paris’ 
law [13]. It states that the crack grows as a function of the amount of load cycle as follows: 

  ,
mda C K

dN
    (5) 

where a is the crack length, N indicates the amount of load cycles, C and m represent the 
material parameters and K is the range of effective stress intensity factors.  
     Here, K  is assumed as equal to the difference between the maximum and the minimum 
values of the equivalent SIF, or eqK , during one load cycle. The value of eqK  is given by a 

combination of IK  and IIK  obtained by a desired criterion, commonly based on stress or 
energy methods. Several approaches have been introduced in the literature, e.g., the 
maximum circumferential stress criterion [14], the maximum energy release rate criterion 
[15] and minimum strain energy density criterion [16]. In this study, the maximum 
circumferential stress criterion is utilized. This criterion assumes that the crack grows along 
the direction p , which is perpendicular to the maximum circumferential stress near the crack 

tip. Thus, p is defined as follows: 

2 2
1

2 2

3 8
sin .

9
I II II II I

p
II I

K K K K K
K K

 
   
  

  (6)

     With p value defined, the value of eqK  is assessed as follows: 

 2 3
cos cos sin .

2 2 2
p p

eq I II pK K K
 


         

    
  (7)

     In this study, the SIF values for modes I and II are obtained with the path-independent J-
integral proposed by Rice and Sih [17]. This integral is evaluated along a path J  enclosing 

the crack tip being expressed by: 

 1 ,1 ,
J

j jJ Wn p u d


     (8)

where W is the strain energy density given by 
0

ij

ij ijd

  , jp  are the tractions along J  

obtained by ij in , ju  are the displacements along J  and in  are the components of the 

normal versor to the path. 
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Figure 1:  Path used to evaluate the J-integral. 

     In the proposed model, the path J is assumed as circular and centred at the crack tip. It 

starts at a collocation point of the BEM mesh on one crack surface and finishes at the 
corresponding point on the opposite surface as illustrated in Fig. 1. Moreover, the integration 
path must be positioned inside the piecewise homogeneous material and cannot cross any 
other crack tip. To satisfy such conditions, a simpler automatic scheme is utilized to adjust 
the length of the path radius, which accounts for the intersection distances. 
     To evaluate the J-integral numerically in the context of the DBEM, a set of internal points 
is symmetrically positioned at the crack axis along J . Because the problem is analysed via 

DBEM, the displacements and stresses of the internal points are obtained into a post-
processing phase. For this purpose, the discretized forms of eqns (1) and (2) are applied. 
Then, the displacement vector and the stress state of the internal points are rotated to the 
coordinate system oriented according to the crack tip, as shown in Fig. 1. Here, to calculate 

IK  and IIK separately from the J-integral in a mixed-mode problem, the mode decoupling 
technique proposed by [18] is utilized. In this approach, the displacements and stresses of 
two symmetric points P and P are decomposed into their symmetric and antisymmetric 
parts. By adopting this procedure, the J-integral presented in eqn (8) is also decoupled into a 

sum of two terms, IJ  and IIJ , with general expression given by: 

 1 ,1 ,
J

M M M M
j jJ W n p u d


     (9)

where ,M I II  represents the fracture mode. The mode I or mode II are considered if the 
symmetric or antisymmetric parts of the elastic fields is accounted in eqn (9), respectively. 
     By discretizing J  into a set of elements that contain the points defined along the path 

and by adopting a polynomial approximation for displacements and stresses over the element, 
the integral in eqn (9) can be evaluated numerically using the Gauss–Legendre quadrature. 

With IJ  and IIJ , the SIF values are determined by: 

* ,I
IK E J   (10)

* ,II
IIK E J   (11)
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where *E E  for plane stress or  * 21E E v   for plane strain, with E and v being the 

Young’s modulus and Poisson’s ratio, respectively. 
     It is worth mentioning that the value of IK  is always positive and is assessed directly 

from eqn (10). On the other hand, the IIK value from eqn (11) gives only its magnitude, 
because both positive and negative values are allowed. The sign is positive if the 

displacement about 1x  for the top crack face is higher than for the bottom crack face, and it 

is negative otherwise. 
     Another relevant quantity to determine in fatigue problems is the structural life, i.e., the 
amount of load cycles until the failure. The failure is usually characterized by a high crack 
growth rate or by a macro crack that develops within the body, compromising its structural 
integrity. In the present study, the amount of load cycles 1iN   required to a crack tip to 

grow from a certain length ia  to a length 1ia   is obtained from the integration of the Paris’ 
law as follows: 

 
1

1 .
i

i

a
i ma

daN
C K



 
   (12) 

     The K value depends on the crack length a. Assuming sufficient small crack length 
increments 1i ia a a   , K  can be written as a linear function of a according to: 

   
1( ) ,i

i i i
a a

K a K K K
a


      


  (13)

where 1iK   and iK  correspond to the values of K  at the crack tip evaluated to the 

lengths 1ia   and ia , respectively. 
     Substituting eqn (13) into eqn (12) and developing it algebraically, the expression to 
evaluate the increment in the amount of load cycles is obtained as follows: 

 
   

1 1
1

1
1

.
1

m m
i i

i
i i

a K K
N

C m K K

 





   
 

   
  (14)

     When the crack tip crosses the structural boundary or another crack at the configuration 
i+1, it becomes inactive and the value of 1iK   cannot be computed. In this case, only the 

value of iK  is used to estimate 1iN   by applying the discrete form of Paris’ law as follows: 

 
1 .i m

i

aN
C K




 


  (15) 

     Moreover, eqn (14) is only valid if the crack tip remains in the same subdomain. Otherwise 

1iN   is evaluated by using the discrete form of Paris’ law considering each crack increment 
along a subdomain separately. 
     Suppose the situation described in Fig. 2(b), where a crack tip initially at material 1 grows 

1a  in material 1 and 2a  in material 2. Taking the corresponding value of K  as the one 
obtained when the tip is at same material, 1iN   is given by: 
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(a) (b)

Figure 2:  Crack growth. (a) To the structural boundary; and (b) Between subdomains. 

   1 2

1 2
1

1 2 1

.i m m
i i

a aN
C K C K




 
  

 
  (16)

     In a problem with multiple cracks, the value of 1iN   is evaluated with eqns (14), (15) or 
(16) considering the crack tip with the highest growth rate at the configuration i. 

4  THE CRACK GROWTH SCHEME 
The solution process of the fatigue crack growth problem in a nonhomogeneous domain starts 
with the evaluation of the classical H and G matrices for the entire boundary element 
discretization. Such matrices are composed of the kernels presented in eqns (3) and (4). Thus, 
the DBEM and the sub-region BEM technique are utilized. Then, for each load phase that 
constitute one load cycle, one response to the boundary values is obtained by applying the 
corresponding boundary conditions and by solving the algebraic system of equations. The 
SIF values are also computed for the crack tips at each load phase in a post-processing stage 
using the J-integral technique. After all load phases are analysed, K  is evaluated for each 
tip by the difference between the maximum and minimum values of eqK  determined into one 

load cycle. A given crack tip grow if the respective value of K  is higher than the threshold 
SIF range thK  defined for the material. The propagation angle of the growing crack is 

evaluated as the weighted average of the values of p  defined for all load phases adopting 

the corresponding eqK  as weights, i.e.: 

( ) ( )

( )

,

nlp
j j

p eq
j

p nlp
j

eq
j

K

K


 




  (17) 

in which nlp is the amount of load phases during one load cycle and ( )j
p  and ( )j

eqK  are, 

respectively, the propagation angle and the equivalent SIF for the j-th load phase defined by 
eqns (6) and (7). 

2 ia

a

2 ia

1a
2a

# 2mat
# 1mat

iK iK

1iK 
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     Along this direction, an increment at the crack length cL  is defined as follows: 

 max

.
sdm

sd
c

C KL L
da dN


     (18) 

where L  is the standard crack length increment defined in the analysis, sdC  and sdm  are 
the parameters of Paris’ law for the subdomain that contains the considered tip and 
 max
da dN  is the highest value of the crack growth rate observed during one load cycle. 

     From eqn (18), one notices that in a problem involving multiple cracks, some cracks can 
grow faster than others with smaller growth rate. This may imply in small length increments 
for the slower growing cracks. In this situation, some collocation points may be very close to 
other, compromising the accuracy of the DBEM solution. To avoid numerical issues, a virtual 
crack extension scheme similar to that proposed by [8] is applied. In this strategy, a crack tip 
propagates only if the following conditions are satisfied: a specified ratio between the lengths 
of adjacent elements must not be exceeded; and the crack length increment must be higher 
than a given ratio of .L  If these conditions are not observed, the crack tip is not extended 

and the corresponding cL  defined at that configuration is accumulated as a virtual length. 
In the course of the analysis, if the total virtual length exceeds both growing condition, then 
the crack grows with the accumulated length. This scheme certainly introduces 
approximations in the analysis. However, because the lengths involved in this procedure are 
small, it does not affect significantly the solution accuracy. 
     When the crack tips propagate, new collocation points are positioned along the path to 
discretize the new crack faces as illustrated in Fig. 3. To each collocation point, two 
additional degrees of freedom in displacements and tractions are created. Therefore, the 
corresponding influence coefficients are added at H and G matrices using the DBEM 
formulation. In addition, the new crack increments may intersect a pre-existing element in 
the boundary mesh. In this case, the intersected element is modified and a new element is 
created, Fig. 3(b). The influence coefficients related to the modified element are changed, 
whereas the influence coefficients related to the new element are added at H and G matrices. 
The Fig. 3(c) represents the changes of the BEM matrices with additions and modifications 
of elements on the mesh. 
 
 

 
(a) (b) (c) 

Figure 3:   Representation of: (a) Initial mesh composed of quadratic elements; (b) The 
remeshing procedure during the crack growth; (c) The changes in H and G 
matrices when elements are created and modified during crack propagation. 
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     After a new crack configuration is defined, the solution of the structure is repeated for 
each load phase. The amount of load cycles to obtain the new configuration from a previous 
one is evaluated with eqns (14), (15) or (16), according to the current position of the critical 
crack tip. 
     The fatigue failure of the structure is achieved when the growth rate for a given crack tip 
becomes large, usually in the order of millimetres per cycle. Moreover, if the maximum value 
of eqK  during one load cycle exceeds the fracture toughness of the material IcK , it is 

considered that unstable crack propagation occur and the structure fails by fracture. 

5  APPLICATION 
The nonhomogeneous structure analysed in this application is presented in Fig. 4. The left 
structural end is fixed along both directions and an oscillatory load p, with uniform magnitude 
ranging from 0 to 10 MPa, was applied along a half of the hole, as illustrated in Fig. 4. Ten 
cracks with average length equal to 10 mm were randomly distributed at each subdomain and 
two other cracks with fixed length equal to 10 mm were disposed at the hole boundary along 
the diagonal perpendicular to load direction. The following dimensions were considered:

400L mm , 100h mm , 40r mm , 100R mm and 45º   .Plane stress conditions 

were assumed in this analysis. The Poisson’s rates,  , and the Paris’ law parameters were 

assumed the same for both materials, with 1 2 0.2   , 10
1 2 1.0 10C C    and

1 2 2.75m m  , in which da dN is given in mm cycle and eqK in MPa mm . Three 

different Young’s moduli ratios were assumed. Such ratio is defined as 1 2E E  and the 

following scenarios were considered: (a) 1  (homogeneous domain); (b) 0.25  and (c) 

4  . For all these scenarios, 1E was assumed equals to 10000 MPa. 

     The boundary element mesh was composed of quadratic elements. The structural 
boundary was discretized into 124 elements, whereas each crack was discretized into 4 
elements. During the crack propagation, the maximum and minimum crack length increments 
were 5 mm and 1 mm, respectively, and the maximum ratio between the lengths of adjacent 
crack elements was defined equal to 1.5. The Fig. 5 presents the deformed shapes for the final 
configuration accounting for the three scenarios analysed. The Fig. 5(a) illustrates the final 
configuration for 1  , which represents the homogeneous case. For the initial 

configuration, the cracks (1) and (2) were critical and developed the highest growth rates. 
Afterwards, the crack (3) became dominant, because it was at a region with the high stress 
level. This crack first grew towards and intersected the top edge of the structure. Then, it  
 

 

Figure 4:  Nonhomogeneous structure with multiple cracks. 
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propagated downwards, coalesced with crack (4) and crossed the interface between the 
materials. Finally, it intersected the bottom edge, finishing the analysis. The final deformed 
shape for 0.25  is presented in Fig. 5(b). In this case, material 2 was subjected to the 

highest stress level, because it has the higher Young’s modulus. Therefore, just the crack (1) 
was dominant in the beginning. In the course of the analysis, the crack (3) developed the 
highest growth rates and propagated through a path similar to that observed for 1  . 

Finally, the scenario of 4  is considered and illustrated in Fig. 5(c). Because of material 

1 is the stiffest, it developed higher stress levels than in the previous cases. In this scenario, 
crack (2) was dominant throughout the simulation and intersected the crack (5) in the end of 
the analysis. 
     The Fig. 6(a) presents the variation of eqK for the crack tip with the highest growth rate 

at each configuration with the cumulative crack length increment prescribed for the critical 
tips during the analysis. The curves for 1  and 0.25  show similar behaviours, because 

the critical crack tips at both models were the same. At the initial configuration, the maximum 
value of eqK for 0.25  was higher than that determined for 1  because of the higher 

stress level developed in material 2, as discussed before. A sudden decrease of eqK is 

observed when 0.25   for a total crack length increment around 90 mm. This represents 

the subdomain change of the critical tip to the material with lower stiffness. After the critical 
crack penetrated into material 1, the values of eqK observed for both curves were similar, 

because the remained configurations were also similar. 
 
 

(a) (b) (c) 

Figure 5:   Deformed shapes of the final configurations. (a) 1;   (b) 0.25;   and (c) 

4  . Nonhomogeneous structure with multiple cracks. 

(a) (b)

Figure 6:  (a) eqK variation; and (b) Structural life. 
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     Other sudden changes in eqK is observed for both 0.25   and 1  cases. The first, 

around 10 mm, indicates the intersection of one of the tips of crack (3) with the top edge of 
the structure, resulting into a raise of eqK value for its other tip at the following 

configuration. The second, around 40 mm, represents the intersection between cracks (3) and 
(4) for 1  and the shielding effect between the same cracks for 0.25  . In the latter 

situation, the cracks only coalesced in the next configuration. For 4  , the response for the 

initial configuration was the same as for 0.25  , because the critical crack in both cases 

was at the hole edge and in the stiffest material. Afterwards, the eqK values monotonically 

increased during the analysis, but remained lower than the previous cases. 
     The structural life predictions for the analysed cases are shown in Fig. 6(b). Because the 
same Paris’ law parameters were assumed for all materials and cases, the curves behaviours 
are directly related to the eqK variation presented in Fig. 6(a). Therefore, it can be noticed 

that the higher the value of eqK the higher the crack growth rate and, consequently, the 

lower the structural life. The following structural lives were determined for the three cases: 
16,000, 40,000 and 47,000 load cycles for 0.25  , 1  and 4  , respectively. 

     This application demonstrated the robustness of the proposed model in handling fatigue 
crack propagation problems in multiple cracked nonhomogeneous domains. The simulations 
were able to efficiently represent the intersection of cracks with the external boundary, the 
interface between materials and other cracks. Moreover, the responses were stable and in 
accordance with the expected results. 

6  CONCLUSIONS 
In this study, a DBEM model was proposed to simulate the fatigue crack growth in plane 
nonhomogeneous domains considering the LEFM theory. The structures were assumed as 
composed of piecewise homogeneous and isotropic materials. Moreover, the interfaces 
between materials were assumed perfectly bonded.  
     The proposed model was capable to successfully represent the interaction between cracks 
in problems involving multiple cracked domains, including coalescence. The structural life 
was also efficiently predicted by the presented scheme. The DBEM model can be further 
extended to deal with delamination problems by considering the strength of the interface. In 
addition, anisotropic materials can be accounted to analyse other cases of practical 
importance. 
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