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ABSTRACT 
The paper presents an approach based on reduced boundary element methods to resolve axisymmetric 
problems in potential and linear isotropic elasticity theories. The singular integral equations for these 
problems are received using fundamental solutions. Initially three-dimensional problems expressed in 
Cartesian coordinates are transformed to cylindrical ones and integrated with respect to the 
circumference coordinate. So the three-dimensional axisymmetric problems are reduced to systems of 
singular integral equations requiring the evaluation of linear integrals only. The fundamental solutions 
and their derivatives are expressed in terms of complete elliptic integrals. The effective algorithm for 
treatment of the singular integrals is proposed. The multi-domain boundary element method is applied 
for the numerical simulation. As examples, the following problems are considered: fluid induced 
vibrations of a compound cylindrical-spherical elastic shell partially filled with an ideal 
incompressible liquid, and axisymmetric elasticity problems for an isotropic body with rigid or elastic 
circular cylindrical inclusions. 
Keywords:  axisymmetric problems, potential theory, linear isotropic elasticity, multi-domain 
boundary element method, compound cylindrical-spherical shells. 

1  INTRODUCTION 
The boundary element method (BEM) has been used in potential theory and elasticity 
problems for decades. In order to solve the large-scale problems, researchers developed the 
multi-domain boundary element method (MDBEM). The multi-domain collocation strategy 
was briefly introduced by Brebbia et al. in [1], and then developed by Wang and Gao [2], 
Kane et al. [3], Zhang et al. [4] and Gao and Yang [5]. In MDBEM, the computational 
domain is divided into a number of sub-domains and the BEM algebraic equations are 
formulated for each sub-domain. Then the global system of equations is obtained by 
assembling results of all sub-domains using the equilibrium conditions in common interface 
nodes. The global system matrix based on MDBEM has a blocked and sparse character, and 
therefore the well-developed solvers for sparse systems can be employed to solve it. The 
use of MDBEM not only improve both the efficiency and computational speed, but also can 
solve fracture problems by dividing sub-domains along crack surfaces [4], multi-media 
problems [5], and problems for tanks with baffles [6] by dividing sub-domains along 
interfaces and baffle surfaces. In many engineering problems both geometry and boundary 
conditions are axisymmetric about some axis. BEM was initially developed for potential 
theory problems [1] and later extended to elasticity problems [7] due to analogy between 
fundamental solutions of both theories. The BEM for axisymmetric elasticity was first 
applied by Cruse et al. [8], using the fundamental solution obtained by Kermanidis [9]. 
Further BEM applications to axisymmetric problems in elasticity, thermo-elasticity, and 
fracture mechanics have been developed by Bakr [10]. But application of multi-domain 
BEM to axisymmetric problems is still not fully described in the literature. 
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2  PROBLEM STATEMENTS 
In this paper, we describe applications of the MDBEM to solutions of the problems in 
potential theory and linear isotropic elasticity. The emphasis is on problems in which the 
region and the boundary conditions are axisymmetric. In this case, the solution is 
independent of the angular coordinate , and the three-dimensional problem is reduced to a 
two-dimensional problem in the radial coordinate r and the axial coordinate z. 
     Although boundary integral formulations for different partial differential equations will 
change due to the presence of different Green’s functions, the integral equations of 
potential theory and theory of elasticity are similar. Moreover, the Green’s function 
behaviour at the singular point P = Q is essentially the same for these problems. This 
allows us to begin with the simplest boundary integral equation, namely the Laplace 
equation. 
     Integral equations for linear potential flow problems are formulated through the 
application of Green’s third identity, that represents a harmonic function as the sum of 
single- and double-layer potentials. Taking the field point to the boundary, an integral 
equation relating to only boundary values and normal derivatives of the harmonic function 
is obtained. Its counterpart in elasticity is Somigliana’s identity. 

2.1  Liquid induced vibrations of a compound cylindrical-spherical elastic shell 

Containment shell structures have been the subject of intense research over the last 50 
years, and the literature in this area is substantial. Shells composed of cylindrical and 
spherical parts in interaction with a fluid have received a little attention in scientific 
literature in spite of the importance of such thin walled structures in a number of different 
engineering branches. They are often used as tanks for liquid and gas storage, and as 
pressure vessels. They also appear as components of aerospace and marine vehicles, such as 
rocket and balloon skins, and submarine hulls. 
     The problem of free harmonic vibrations of the fluid-filled elastic shell composed of a 
cylindrical part bounded by a hemispherical edge is considered. The shell is of uniform 
thickness h, and height L, made of homogeneous, isotropic material with elasticity modulus 
E, Poisson’s ratio  and mass density s. We designate a moistened shell surface by 
S=S1+S2, and a free surface by S0. Surfaces S1 and S2 correspond to the spherical and 
cylindrical parts, respectively (Fig. 1). 
 

         

Figure 1:  Shell structure, its sketch, and fluid sub-domains. 
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     Denote by R radius of the spherical and cylindrical parts, and by H a height of the wetted 
cylindrical part. Suppose the Cartesian coordinate system 0xyz is connected with the shell, 
the liquid free surface S0 coincides with the plane z=Н+R at the state of rest (Fig. 1). Let 
U  1 2 3, ,U U U  denote the vector-function of shell displacements. 

     Assume that time dependent shell displacements are given by 

 1 2 3exp( ); , ,i t u u u  U u u . 

Here  is the vibration frequency; the time factor exp( )i  will be omitted further on. After 

separation of the time factor, the vibrations of the shell without a liquid are described by a 
system of three partial differential equations 

3
2

1

, 1, 2,3ij i j
i

L u u j


   , 

where ijL are linear differential operators of Kirchhoff–Love shell theory (Levitin and 

Vassiliev [11]). The finite element method was applied by Ravnik et al. in [12] to evaluate 

the natural frequencies k  and modes ku , 1,k N of the shell of revolution without a 

liquid. After forming the global stiffness L  and mass M matrices, the following equation 
of motion for the shell containing fluid is obtained: 

dp LU MU n , 

where n is an external unit normal to the shell wetted surface, the term pdn gives the fluid 
dynamical pressure upon the shell, normal to its surface. 
     To model the fluid domain, a mathematical model has been developed based on the 
following hypotheses: the liquid is incompressible and inviscid one, its motion is 
irrotational, only small vibrations (linear theory) need to be considered. So a scalar velocity 
potential Φ(x,y,z,t) whose gradient represents the fluid velocity can be introduced. The 
liquid pressure  , , ,p p x y z t  acting on the wetted shell surface is obtained from the 

linearized Bernoulli’s equation for a potential flow 

0 , ,l s l d lp gz p p gz p
t t

              
, 

where g is the gravity acceleration, z is the vertical coordinate of a point in the liquid, l is 
the liquid density, ps and pd are static and dynamic components of the liquid pressure, p0 is 
for atmospheric pressure. 
     At any instant the velocity potential Φ(x,y,z,t) could be determined from the following 
boundary value problem:  

2 2 2
2

2 2 2
0

x y z

     
     

  
, 

S

w

t



 


n

, 
0 0

; 0
S S

g
t t

   
  

  n
,          (1) 

where w denotes the normal component of the displacement vector U, namely,  ,w  U n ; 

an unknown function  , ,x y t   describes the form and position of the free surface. The 

second equation in (1) is the impermeability condition on the shell wetted surfaces, the 
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third equation here is the kinematics boundary condition, which assumes that a fluid 
particle of the free surface will stay on this surface at any instance, the fourth equation in 
(1) is the dynamic boundary condition. It consists in equality of the liquid pressure on the 
free surface to atmospheric one. So the problem under consideration is reduced to the 
following system of differential equations: 

dp LU MU n ; 0                                             (2) 

with boundary conditions from (1), relative to Φ, and fixation conditions of the shell, 
relative to U. In this paper clamped-free (C-F) cylindrical-spherical shells are considered. 
i.e. shells of revolution are clamped at the ends A, and free at the ends B (Fig. 1). 
     Consider modes of fluid-filled shell vibrations in the form 

 
1

N

k k
k

c t


 U u ,                                                        (3) 

where ck(t) are unknown coefficients, and uk are eigenmodes of the empty shell vibrations. 
Consider the potential Φ as 1 2    , as it was done in [6]. The series for potential Φ1 

can be written as 

 1 1
1

N

k k
k

c t 


   . 

Here time-dependant coefficients ck(t) are defined in eqn (3). To determine functions 1k 
the following boundary value problems is formulated: 

1 0k  , 1k
kw

s





n

, 
0

1 0k S
  ,  ,k kw  u n , 1,k N .              (4) 

To determine potential 2 we have the problem of liquid vibrations in the rigid shell 
including gravity effects. Use the expansion 

 2 2
1

M

k k
k

d t 


   , 

where dk.(t) are unknown coefficients, and functions 2k are natural modes of the liquid 
sloshing in the rigid tank. To obtain these modes the following boundary value problems 
are considered: 

2 0k  ,  2 0;k

S





n

 
0

0

2 20;k k

S S

g
t t

  
  

  
  n

,  1,k N .             (5) 

The zero eigenvalue obviously exists for problem (5), but we exclude it with the help of the 
following orthogonality condition: 

0

2
0 0k

S

dS



 n

. 

Finally, for the sum of potentials 1 2    the following expression is valid: 

   1 2
1 1

N M

k k k k
k k

c t d t 
 

     .                                            (6) 

The unknown function  takes the form 

   1 2

1 1

N M
k k

k k
k k

c t d t
 


 

 
 

  
n n

.                                          (7) 
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     Both boundary value problems (4) and (5) are reduced to systems of singular integral 
equations using a boundary element method in its direct formulation, Brebbia et al. [1. 
Dropping indexes 1k and 2k the main relation for determining functions 1k and 2k can be 
written in the form 

 0
0 0

1 1
2 P q d d

P P P P 

   
 

    n
,                              (8) 

where 0S S   , the value r= 0P P  represents the Cartesian distance between a field 

point P   , 1, 2,3
i

x P i   on the boundary S and a collocation point 

P0   0 , 1,2,3
i

x P i  . The function , defined on the surface S, presents the pressure on 

the wetted shell surface, and the function q, defined on the surface S0, is the flux, 
/q   n . There are two types of kernels in the integral operators introduced above 

   
1 1

1 2 1 1 2 1 1 0 2
0 0

1 1
, ; , ; ; ,d d P P

P P P P 

           
   

   A B
n

 (9) 

where 
0

1

P P
 and 

0

1

P P


 n

are fundamental solution of the Laplace equation. It would 

be noted that if 1 2    , then 

 
0

1
, 2 d

P P

      
 

 A I
n

, 

where I is the identity tensor. 
     So the problem of free harmonic vibrations of the fluid-filled elastic cylindrical-
spherical shell is reduced to defining the unknown potential and flux from relation (8) that 
can be rewritten as follows 

   , , q    A B .                                                (10) 

2.2  Axisymmetric elasticity problems for an isotropic body with an inhomogeneity 

Consider an elastic finite cylinder with an inhomogeneity. Suppose that the inhomogeneity 
has a form of a rounded cylinder (Fig. 2). 
     The external boundary of the body and its domain are denoted by S and 1, respectively. 
The external boundary of the inclusion and its domain are denoted by Sint and 2. The 
surface S =1 represents the boundary surface including inhomogeneity boundary Sint; so 
S= Sint S1, where S1 is the cylinder boundaries, S2= Sint (Fig. 2). 
     Suppose that the body is statically loaded along the boundary S by boundary tractions t 
and inside the domain by body forces f. 
     This elastic cylinder with the inhomogeneity may be considered as a representative 
volume element for studying composites and nano-composites. Further, let 1 be the region 
of the matrix, and 2 be the region occupied by the inhomogeneity 
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Figure 2:  Elastic cylinder with an inclusion, its sketch, and sub-domains. 

     The three-dimensional isotropic elasticity equations state that the divergence of the 
stress tensor is zero 

       ; 2 / 1 2 tr ; 2 ; tr iiG e             σ f σ e I e e u u e , 

where u is the displacement vector, e is the infinitesimal strain tensor,  is the stress tensor, 
f is the body force, and G=0.5E/(1+) is the shear modulus. 
     Let points P0, P and Q are the collocation point, the points on the external boundary S 
and inside the domain, respectively. The relation between the body tractions and its 
displacements can be expressed by the boundary integral equation (the Somigliana’s 
identity) in the following form [1]: 

         0 0, , ,P P P d P P P d P Q d
 

 


     Cu U t T u U f , 

where C is a constant matrix [8], that depends on the position of the point P on the surface 
, U(P,P0) = {Uij} and T(P,P0) = {Tij} are the Kelvin fundamental solutions of elastostatics 

 0 , ,

1
( , ) 3 4

16 (1 )ij ij i jU P P r r
Gr

 
 

    
, 

    0 , , , ,2

1
( , ) 1 2 3 1 2

8 (1 )ij ij i j i j j i

r
T P P r r r n r n

r
  

 
            n

. 

Here        1/ 2

0 ,, , / /i i i i i i i ir r r r x P x P r r x P r r       . 

     Introducing the matrixes operators as in eqn (9) 

           
1 1

1 2 0 1 1 2 0 1 0 2, , , , , ,P P P d P P P d P
 

         A u T u B t U t , 

and taking into account that  

     
1

1 1 0 1, ,P P P d


    A u Cu T u , 

we obtain the main relation in the absence of body forces, in the following form 
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   , ,   A u B t .                                                 (11) 

The integral eqns (10), (11) for considered problems look the same. The important point 
here is that the singularity order at r = 0 is precisely the same for both integral equations. 

3  MULTI-DOMAIN APPROACH 
Analytic solutions of the singular integral equations are restricted by simple geometrical 
shapes of the bodies, and by impossibility of studying cracks or inclusions, and thus it is 
necessary to use computational techniques. The proposed approach is relied on the 
boundary element method implementation in getting over the continuous models to their 
discrete analogues. For this purpose we use the multi-domain boundary element method, 
proposed by Brebbia et al. in [1]. 
     Suppose that the integration domain  is divided into two parts 1 and 2 by the 
interface surface Sint as in Figs 1, 2. Here i= SintSi, (i=1,2). 
     Rewrite eqns (10), (11) in the form  

   , ,   A X B Y , 

where vector X is for values of the potential (or displacements) in BEM mesh nodes, and Y 
is for values of the flux (or tractions). Introducing 1 = S1, 2 = Sint, and 3= S2 allows us to 

obtain    , ; , , , 1,3ij i j ij i jA B i j      A B . On the interface surface Sint the 

following compatibility conditions are valid: 

int 1 int 2 int 1 int 2
,S S S S     X X Y Y .                                   (12) 

Denote by Xi the unknown values of X in nodes of i. The values of fluxes (tractions) are Yi 
(i=1,2,3). By using the multi-domain approach [13] to determine unknown X values the 
next system of integral equations in the operator form is obtained: 

11 1 12 2 11 1 12 2 0 1, ,A X A X B Y B Y P     

21 1 22 2 21 1 22 2 0 int 1, ,A X A X B Y B Y P S                       (13) 

22 2 23 3 22 2 23 3 0 int 2, ,A X A X B Y B Y P S       

32 2 33 3 32 2 33 3 0 2, .A X A X B Y B Y P      

     Receiving X2 from the second and third equations in (13) and substituting it into first and 
fourth equations respectively, one can obtain the next expressions: 

1 11 1 12 2 2 32 2 33 3, ,X H Y H Y X H Y H Y     

where      11 1
2 22 2 2 22 21 , 1,3; 1, 2,3

i j

ij ii i i ij i iH A A A A B A A B i j
        . Subtracting third 

equation from the second one in (13) leads to the relation for Y2  

       2 2

1 3 2 1 1 3 3 2 2 22 2 2, 1 , 1 , 1,3
i i

i i i ii i i iF F Y G X G X G B A H F B A H i
 

          .   (14) 

     Note that system (14) only contains the unknowns Y2 relative to the interface surface Sint. 
The unknowns for other surfaces are expressed through Y2 by given formulas. 
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4  BOUNDARY INTEGRAL EQUATIONS IN AXISYMMETRIC FORMULATION 
Accordingly to the features of axisymmetric problems it is useful to transform the Cartesian 
coordinates system  , ,x y z  to a cylindrical one  , , z   with following relations: 

cos ; sin ;x y z z      . 

     The kernels of integral operators A and B for both potential and elasticity problems can 
be represented on terms of complete elliptic integrals [6], [10]. The basic procedure is to 
start with the standard boundary integral equations, replace Cartesian coordinates with 
cylindrical ones, and integrate with respect to , taking into account that 

       22 2
0 0 0 0 0 0 0 0, , ; , , ; 2 cosP z P z P P z z                 . 

     Then for integral operators of the potential theory problem we have 

               1 0 2 0 0, 2 , E , K ; , , KA P P k A P P k B P P k       A I B . 

Here 

 
2 2 2

0
1 0

ˆ4
ˆ,

2 r z

z
A P P n zn

cd

 


  
  

 
,  02

2
, rn

A P P
c

  ,  0

4
,B P P

c
 , 

2 2 2
0 0 0

ˆ ˆ, , 2 , ,z z z a z b c a b d a b            , 2 2b
k

a b



, 

,r zn n are components of the external unit normal to the surface  in the  and z directions, 

respectively, and    E , Kk k  are complete elliptic integrals 

   
/2

1/ 22 2

0

E 1 sink k d


   ,    
/ 2

1/22 2

0

K 1 sink k d


 


  . 

     The matrix integral operators of axisymmetric elasticity can be expressed in terms of 
complete elliptic integrals in the similar way 

         0 0, , , , , , , ,ij ijT P P U P P i j z       A C B , 

           1 2 1 2
0 0, E K , , E Kij ij ij ij ij ijT P P T k T k U P P U k U k    . 

The displacement kernels here present weak singularities. These kernels are rearranged, so 
their components are following [10]: 

   
2

1 2 2 2 2 1 12
11 11 12 12

0 0 0

ˆ
ˆ ˆ3 4 , 3 4 , , ,

A a A Az U h
U c z U a z U U

d dc c c
 

  
                

  

 2 2
2 1 2 121
21 21 22 22

2 3 4ˆ ˆ2
, , , ,

AAz U f Az
U U U U

dc c d c





      

  12 2 2 2 2 2 2
0 0

ˆ ˆ16 1 , , .A G v h z f z    


           

     Similarly, the traction kernels can be expressed as in [10] by following formulas 
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 2k kr kz
ij ij r ij zT G T n T n  , 

where  

 
2 2

1 2 2 1 2
11 112

0 0

2 2
2 2

11 112
0 0

2 4
ˆ ˆ2 3 3 ; 2 3 3 ;

ˆ ˆ ˆ3
2 ; 2 3 ;

2

r z

r z

A a f A a
T q f m z T a z

cd cdcd cd

A afz Az az
T m n T

cd cdcd c

  
   

 
  

      
                      

   
       

   
2

2 2 2 2 2 2
0

3
ˆ2 ; 2 ; 2 3 ;

2

b
q ar a m a n z         

 
2 2

1 1 1 2 2 2 20
12 11 12 12 11 12

0 0

ˆ ˆ8
ˆ; 2 1 1 ; ; 2 1 ;r z z r z zA f Az hz

T T T h z T T T
cd cdc c

 
 

    
            

     
 

   
2 2

1 1 2 2
21 21 212 2

0

ˆ ˆ ˆ8 4 1 2
ˆ4 1 , 1 2 3 , ;r z rA a az A fa Az z

T T f z T
cd cd cdd c d c c

 
 

                   
     

 

2 2 3
2 1 1 1 2 2 2

21 22 21 22 22 21 22 3
0 0

ˆ ˆ ˆ ˆ ˆ2 4 2
2 1 ; , 1 2 , , .z r z z r z zAz fz Az az Az

T T T T T T T
cd cdc d c c

 
 

   
           

   
 

The components 1,2
ijU  and 2

ijT are regular functions. So the only singularity in these 

components is the logarithmic one due asymptotic behavior of  K k  for 1k  . The special 

treatment is applied to evaluating the integrals using the orthogonal polynomials with 
logarithmic weights [1]. It was shown by Balas et al. [14] that components 1

ijT contain terms 

   1 0 0 /r za n n z z d       , ,i j  and    2 0 0 /za n n z z d        for i j . As 

in the cylindrical coordinate system there are 

 z  , 2 2/ 1 , 1 / 1z rn n         , 

then for 0z z  one can obtain that 1 0a  , but  
1

2
2 0 1a z z 


     

. Therefore, 

components 1 1
11 22,T T  are regular functions, whereas components 1 1

12 21,T T  have infinite gaps. 

For their numerical evaluation the method elaborated by Becker [15] is used. 

5  NUMERICAL EXAMPLES 
The proposed method is applied to solution of axisymmetric problems in potential theory 
and elastostatics. 

5.1  Validation of the proposed axisymmetric BEM 

The first step is to define the requisite number of boundary elements for evaluating 
unknown functions with given accuracy. 
     To testify the proposed numerical approach to potential theory problems the 
axisymmetric free liquid vibrations in a rigid cylindrical shell are considered. The circular 
cylindrical shell with a flat bottom has the following parameters: radius is R = 1 m, the fluid 
filling level H = 2 m. The numerical solution is obtained by using the BEM as it is 
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described beforehand. In present numerical simulation we used 60 boundary elements along 
the bottom, 120 elements along wetted cylindrical parts and 60 elements along the free 
surface radius. Good agreement of analytical results for frequency parameter obtained by 
Ibrahim [16] and numerical ones received by proposed axisymmetric BEM is demonstrated 
in Table 1. 
     The example for validation in elastostatics is a long cylinder fixed at one edge (z = 0). 
The force F is applied to the other edge (z = L). The ratio of radius R to the cylinder length 
L is 1/10, elasticity modulus is E = 2,11ꞏ106 MPa. The mesh used here has 120 boundary 
elements along the cylindrical part and 60 elements along top and bottom radii of the 
cylinder. This axisymmetric problem is solved using constant elements and integrations 
with 6 Gauss points. Table 2 shows the normalized displacements w* = wER2 /FL obtained 
at the points r/R = 0.05, 0.25, 0.5, 0.75, 0.99 at z = L. 
     The presented BEM and analytical solution 2/w Fz E R  are in very good agreement. 
The accuracy is decreased at boundary points r/R = 0.05 and r/R = 0.99. Calculations in 
these points require special treatment. 

5.2  Vibrations of compound cylindrical-spherical elastic shells 

Consider the fluid-filled elastic shell composed of a cylindrical part bounded by a 
hemispherical edge with thickness h = 0.01m, radius R = 1m, height L = R+H=2m, 
elasticity modulus E = 2,11ꞏ106 MPa, Poisson’s ratio  =0.3, mass density s = 8000 kg/m3, 
and liquid density l = 1000 kg/m3 (Fig. 1). At first stage the sloshing frequencies are 
evaluated for angular numbers  = 0,1,2,4,5,6. The results are presented in Table 3. 
     Next stage is to evaluate the frequencies and modes of the elastic empty shell. The shell 
is supposed to be clamped over its rigid spherical bottom. In Table 3 there are frequencies 
of the empty cylindrical-spherical shell (CSS) described above and frequencies of an empty 
cylindrical shell (CS) clamped over its rigid flat bottom with radius R = 1m and height  
H = 2m, evaluated for  = 0,1,2,4,5,6. 
     The numerical analysis demonstrates that the lowest frequencies are liquid sloshing 
ones, and occur for the angular number  = 1. Analyzing results of Table 3 one can 
observe, that the sloshing frequencies of cylindrical and cylindrical-spherical shells with 
equal heights are very close, whereas frequencies of these both empty and fluid-filled 
elastic shells with equal heights and radii of free surfaces are differed essentially. 

Table 1:  Comparison of analytical and numerical results. 

Method 
Frequency parameter 2/g 

n = 1 n = 2 n = 3 n = 4 n = 5 
BEM 1.833886 5.331447 8.536322 11.706103 14.864072 
ANALYTICAL 1.833885 5.331442 8.536316 11.706005 14.863589 

Table 2:  Normalized static displacements w* of the elastic cylinder. 

Method 
Points, r/R 

0.05 0.25 0.5 0.75 0.99 
BEM 1.006 1.0003 1.00001 1.0004 1.02 
Analytic 1.0 1.0 1.0 1.0 1.0 
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Table 3:  Frequencies of empty and fluid-filled shells, Hz. 

 m Sloshing CS 
Sloshing 

CSS
Empty CS 

Empty 
CSS

Fluid-
filled CS 

Fluid-
filled CSS 

0 
1 6.1278 6.1283 398.132 796.263 145.582 221.553 
2 8.1217 8.2929 610.929 799.048 344.468 417.007 
3 9.9849 9.9871 810.703 817.043 398.132 512.361 

1 
1 4.3494 4.2392 235.485 473.302 77.780 169.845 
2 7.2283 7.2291 606.710 779.754 348.210 389.965 
3 9.1463 9.1479 730.413 811.617 629.659 492.862 

2 
1 5.4709 5.4708 117.679 290.119 49.489 136.445 
2 8.1076 8.1077 389.150 671.876 184.712 366.504 
3 9.8843 9.8861 619.164 774.231 319.253 483.943 

4 
1 7.2188 7.2188 54.491 134.018 28.032 73.046 
2 9.5376 9.5383 186.299 426.793 100.414 251.088 
3 11.1482 11.1494 374.973 654.876 213.825 421.393 

5 
1 7.9292 7.9286 65.136 110.755 35.401 60.490 
2 10.1535 10.1535 148.954 348.935 83.067 204.221 
3 11.7078 11.7082 300.608 592.120 176.017 379.170 

6 
1 8.5739 8.5724 88.609 112.813 52.074 68.111 
2 10.7239 10.7227 139.468 300.132 83.090 188.162 
3 12.2322 12.3824 255.945 538.350 158.914 359.072 

 
     The lowest frequency of the cylindrical shell caused by its elastic walls vibrations is 
nearly two times less than that one of the considered CSS. The frequencies of fluid-filled 
shell vibrations differ drastically from frequencies of empty ones for both shells. But with 
increasing the circumferential wave number  this difference become gradually smaller. 
Fig. 3 shows the modes of lowest frequencies. 
     For liquid sloshing the lowest frequencies corresponds to = 1 (Fig. 3(a)), and for the 
elastic CSS vibrations it occurs at = 5 (Fig. 3(b)). 

5.3  Stress-strain state of the elastic cylinder with the inhomogeneity 

Consider the cylinder fixed at one edge (z=0.0), loaded uniformly at the other one (z = 5.0) 
and having the inclusion in the form of rounded cylinder (Fig. 2). Eqn (12) are perfect 
contact conditions. The ratio of cylinder and inclusion heights is H1/H2 = 5, and the ratio of 
their radii is R1/R2 = 2, elasticity moduli are E1 = 2,11ꞏ106 MPa, E2 = 2,11ꞏ107 MPa, and 
Poisson’s ratios are 1 = 2 = 0.3. We investigate the disturbance in a stress-strain state in 
the cylinder caused by the presence of this inhomogeneity. The multi-domain approach is 
applied here, and the resulting system of linear algebraic equations contains unknown 
displacements only along the interface surface Sint (Fig. 2). Let now 1 and 2 are cylinder 
surface parts with given displacements and tractions, respectively, 3 = Sint1, and  
4 = Sint2. System (13) is rewritten for the case of given displacements at the elastic 
cylinder edge. Namely, we have 

1 1 2 2 3 3 3 3 12 2 0 43 3 43 3 0 4, , 0,i i i i iB Y A X A X B Y B Y P A X B Y P         . 
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(a) (b)

Figure 3:  Modes of lowest frequencies. Figure 4:  Displacements of interface 
surface. 

     So the relation between tractions and displacements of the cylinder on the interface 
surface is 1

3 41 43 3Y B A X  , and we obtain the final system of equations for the elastic 

cylinder with the inclusion. For numerical simulation we use following numbers Ni of one-
dimensional boundary elements along surfaces I (i=1,2,3) : N1 =150, N2 =30, N3=240. Fig. 
4 shows the distributions of displacements in the elastic cylinder along the interface 
surface. In contrast to homogeneous cylinder the displacements are substantially non-
uniform. 

6  CONCLUSION 
The effective method is elaborated for numerical solution of the boundary integral 
equations originated in axisymmetric problems of potential theory and elastostatics. Their 
form is received by using transition to cylindrical coordinates with following integration 
over angular variable. The approach is relied on the boundary element method 
implementation in getting from continuous models to their discrete analogues with 
thorough analysis of displacement and traction kernels. It reveals the similarities of the 
considered kernels in the singular integral operators that are represented on terms of 
complete elliptic integrals of first and second kinds both in potential and elasticity theories. 
Analysis of integrals proved the existence of logarithmic and Cauchy’s singularities. The 
effective procedures for numerical treatment of these integrals taking into account the 
presence of these singularities are built. To verify the proposed method the numerical 
examples are provided. The coupled liquid and elastic walls vibrations of composed shells 
of revolution are considered to testify the proposed numerical approach to axisymmetric 
problems of potential theory. The long cylinder fixed at one edge and loaded by uniform 
stress at the other edge is considered for validation of the proposed method. The 
disturbance in a stress-strain state in the elastic cylinder caused by the presence of the 
inclusion is investigated with using the multi-domain approach. 
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