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Abstract 

In the plane problem of elasticity of inhomogeneous bodies problems are often 
found with the radial inhomogeneity occurring in the presence of axially 
symmetric physical fields (temperature, radiation, etc.). At the same time the 
plane problem itself can be two-dimensional. Of homogeneous bodies Michell’s 
solution for Airy’s stress function is the most well known. This solution is 
presented in the form of an infinite series in the trigonometric functions with 
constant coefficients. This article considers the statement of the problem in 
displacements, when the main unknown chosen functions are  ,ru  and  ,rv . 

The solution in displacements has the advantage that if the boundary conditions 
are in displacements it is not necessary to integrate Cauchy relations. 
Displacements are also represented in the form of series, but unlike in Michell’s 
solutions the coefficients of trigonometric functions are also functions that 
depend on the radius. They are also solved in the example. 
Keywords: Michell’s solution, theory of elasticity, plane problem, 
inhomogeneity. 

1 Introduction 

This paper considers the method of solving the plane problem of the theory of 
elasticity of inhomogeneous bodies in polar coordinates. For the case of radial 
inhomogeneity there is a method of separation of variables which is a 
generalization of Michell’s solutions for a homogeneous body [1]. 
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2 Main equations 

For the case where the mechanical characteristics of the material depend only on 
the radius the equations of the plane problem in polar coordinates are 
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where )(),( rr  , f denotes forced (e.g. temperature) strains, R,  are 

mass forces. In the plane stress problem   and  must be replaced by  
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3 Solution for homogeneous material 

If the mechanical properties of the material are constant it is known as Michell’s 
solution for the Airy stress function [1]. In the notation of the coefficients 
according to [1], we can write the complete solution in the form: 
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     Stresses can be determined by known formulas:  
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Having determined the deformation from Hooke’s law and integrating Cauchy 
relations, we obtain expressions for displacements. For the case of plane stress 
state they are have the form [2]: 
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     In general, the solutions of equations (1) and (2) depend on the functions 
      ,,,,, rKrr and cannot be written in closed form. In the following 

for the case when the mechanical properties together with their first derivatives 
are continuous functions of the radius, by the method of separation of variables 
equations (1) and (2) are reduced to systems of ordinary differential equations, 
which, by analogy with the Michell’s generalized solution, are called 
generalized equations of the plane problem in polar coordinates. 

4 Generalized equations of the plane problem for a radially 
inhomogeneous body 

Using the analogy with the solutions (4) and (5) for a homogeneous material, we 
seek the solution of equations (1) and (2) in the form 
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where cn ,...0 are the functions depending only on the radius. It is assumed 

that       ,,,,, rrRrf  also might also be presented by series similar 

to (6).  
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     Substituting (6) into (1) and (2) by equating to zero the sum of terms that do 
not contain  , as well as the amounts which are multiplied by  sin, , and so 

on, leads to an infinite system of ordinary differential equations for the functions 

ii  , . Below are the equations for some functions from the expressions (6) 
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     In the above equations, the prime denotes differentiation with respect to the 
radius. Obtained system of equations is partially decomposed. For example, 
equations (11) and (14) form a closed system with respect to a pair of functions

sn  and cn , and equations (12) and (13) respectively to functions сn  and 
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sn . The rest of the functions in (6) can be found consistently from the 

corresponding equations. For example, from (9) and (10) we can find 1 and 1
after which from (7) and (8) we can find 0  and 0 .  

     To equations (7)–(14) shall be added boundary conditions of any type. 
Formulas for stresses can be obtained from Hooke’s law with Cauchy relations 
and expressions (6).  

5 Two analytical solutions 

5.1 Pure torsion of thin ring 

Consider a thin ring fixed on the inner contour ( аr  ), and on the outer ( br  ) 
loaded with uniform tangential forces with intensity q  (Fig. 1). Because the 

displacements v do not dependent on  , the solution is sought in the form 

0v . Other functions i  and all functions i  are equal to zero. According to 
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     Proceeding to the solution for the inhomogeneous material we will consider 

one of the simplest dependencies   ar /0 . In that event equation (15) is the 

Euler equation, the solution of which is 
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Figure 1: Design scheme. 

     In expressions (17) and (18) the superscripts refer respectively to the 
homogeneous and inhomogeneous material. Comparing the two solutions, we 
can see that the stresses in the ring do not depend on the inhomogeneity, which 
can be explained as follows. This problem is statically determinate. If you cut the 
ring the inner radius of which is ar 0  (Fig. 2), the stresses on the inner contour 

of the ring can be calculated from the condition that the torque about the axis x is 
equal to zero: 

./)(02)(2)( 2
0

2
0000 rqbrrrrbbqxM   

     Displacements in the two cases are different. The ratio of displacement of the 
outer contour points in the inhomogeneous and homogeneous rings is 
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where abk  . Analysis shows that when 0 , which corresponds to 

toughening the material with increasing radius, this ratio is always less than 
unity. 

 
 

 
 

Figure 2: Equilibrium of the ring: 0)(  xM . 

5.2 Ring under the action of normal and shear loads 

Let us consider the problem of equilibrium in the thin ring when on the outer 
surface the loads are distributed: 

,22sin;2)2cos1( 00  pqpp   (19) 
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and on the inner surface there are no loads (Fig. 3). In the case ba   it is the 
Kirsch’s problem about stretching of the thin plate with a small circular hole.  

Figure 3: Calculation scheme. 
 

     Let the modulus of elasticity of the ring’s material vary according to the 
power law 

 








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a

r
ErE 0 ,  (20) 

 

and Poisson ratio .const      
 To satisfy the boundary conditions  
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 (21) 

in the expressions for the stresses we can restrict the terms containing the 
functions 210 ,, c  and 2s :  
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 (22) 

For determining functions 210 ,, c  and 2s it is necessary to consider 

equations (7), (10), (12) and (13) for n = 2, taking into account 0в  R . 

To go from a plane strain to plane stress state we will replace   with

)1/( 2 E .

     From the condition of uniqueness, the solution must not contain  . Thus, 
from the third equality (22) it follows that 

01
1 




r
. 
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     By using this equality equation (10) takes the form 

01  . 

The integral of this equation is a linear function which comes is constant at
bar , . Taking into account that boundary condition for r , equation (19) 

does not contain a constant so we must assume 01  . Then equation (7) is 

simplified:  

    0
)(

2)(2 0
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2
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rrr
.  (23) 

Thus, the problem can be separated into two problems: determination using 
equation (23) for the axisymmetric part of the solution and the determination 
from equations (12) and (13) which depends on  . Substitution of (20) into 
these equations leads them to the form 
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     Solution of equation (24) is the function [3]: 
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1

2
2

1

10



 rCrС , 
 (27)

where   1 ,    141 2  .  

     Integration constants appearing in (27) can be found from the boundary 
conditions for the axisymmetric component of the external load: 

  .2,;0, 0pbrar rr    (28)

The system of two ordinary differential equations (25) and (26) can be reduced 
to a single fourth-order equation: 
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The obtained equation can be reduced to a differential equation with constant 
coefficients by introducing variable t  using dependence expr ( t ) : 
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The characteristic equation corresponding to the obtained equation is  
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Using substitution ll  2  this equation can be reduced to a quadratic 

equation: 

  .0933310 22   

     The final solution of equation (29) is represented as  
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Constants iD  determined from the boundary conditions for the non-

axisymmetric component: 
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Function 2s can be found from eqn (25). Below is an example of the 

calculation performed for the following initial data: ;1 ;2ab ;31

MPa.102 4Е  
     Fig. 4 shows diagrams of stresses   along three radial directions. You may 

see that greatest differences of stress for inhomogeneous and homogeneous 
materials do not exceed 20%. Fig. 5 shows diagrams of the displacements of the 
inner contour points of the ring along the angular coordinate. It can be noted that 
displacement in the inhomogeneous ring is greater than in the homogeneous ring. 
This is due to the fact that at 1 the modulus decreases from the inner to the 
outer contour twice, and this leads to a decrease in the total ring stiffness. 
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Figure 4: Stresses   in the ring. 1 – 0 ; 2 – 4 ; 3 – 2 ; 

 ——— inhomogeneous material, - - - -    homogeneous material. 

 

 
 

Figure 5: Displacements of inner contour of the ring. ——— inhomogeneous 
material, - - - - homogeneous material. 

6 Numerical–analytical method of solution 

If the dependencies  rЕ and  r  are complex enough then it is not possible to 

obtain an analytical solution. In this case it is necessary to use numerical 
integration methods. Reduction of partial differential equations to a system of 
ordinary differential equations and their subsequent numerical solution is called 
the numerical–analytical method (this method is sometimes called the 
semianalytic method). 
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     The above equations (7)–(14) and the equations for the remaining functions 

i  and i  included in expressions (6) can be divided into groups of two 

second-order equations for a pair of functions. Two second-order equations may 
be reduced to the four equations of the first order, and the resulting system of 
four equations can be solved numerically using one of the computer systems 
such as Matlab. In the following we give an example of an appropriate 
calculation. 
     Here is the solution of the problem discussed in Section 5.2. We reduce 
equations (12) and (13) to a system of four first-order equations. We introduce 
the notation 

24232221 ,,, sscc yyyy    (31)

 Then equations (12) and (13) can be written as 
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(33) 

 

Adding to these two equations the equalities 

4321 ; yyyy  , (34) 

which follow from (31), we receive the system of four first-order equations. 
     Boundary conditions for non-axisymmetric component (30) can be written as 
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Thus equations (32)–(34) with boundary conditions (35) and (36) represent the 
boundary problem for the non-axisymmetric part of the solution. 
     Similarly, in view of 01  the boundary value problem can be presented for 

the axisymmetric component: 
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Equation (37) with boundary conditions (38) is also easily solved using any 
software package. 
     To determine the accuracy of the numerical–analytic methods we performed 
calculations of the same sample as in Section 5.2 for the same initial data. 
Interval [a, b] is divided into 100 steps. Table 1 shows the comparative values of 

the stresses in an inhomogeneous ring when 45  obtained by analytical and 
numerical calculations.                                                                      

Table 1:  Stresses in the ring. 

 

ar  
Analytical 
calculation 

Numerical 
calculation 

 
r  r  r  r  

1.0 0.0 0.0 0.0 0.0 

1.2 0.252 -1.266 0.263 -1.296 

1.4 0.377 -1.338 0.378 -1.363 

1.6 0.444 -1.108 0.444 -1.121 

1.8 0.480 -0.807 0.480 -0.813 

2.0 2.000 -0.500 2.000 -0.500 

     Comparison of the results obtained by the two methods suggests a fairly high 
precision of the numerical–analytic method. 

7 Conclusions 

The developed method of separation of variables in the plane problem in 
aggregates with a numerical method for solving a system of ordinary differential 
equations allows solutions to be obtained for a wide range of problems for the 
radially inhomogeneous bodies. Such problems are encountered in heat and 
power generation, the construction of underground facilities and other areas of 
technology in the presence of temperature [4], radiation [5] and moisture [6–8]. 
The solution of such problems, taking into account heterogeneity, clarifies the 
stress–strain state of structures, which may lead to their optimization and to 
improvements in efficiency [9–11]. 
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