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Abstract 

This is the sequel of a paper presented at the BEM/MRM Conference four years 
ago, in which the conventional, collocation boundary element method was 
reformulated by proposing a simple, however consistent derivation on the basis of 
the weighted-residuals statement. It was shown that the single-layer potential 
matrix G should be in general rectangular and satisfy some spectral properties 
(orthogonality to the space of unbalanced boundary traction forces) in the same 
way as the double-layer potential matrix H is orthogonal to rigid-body 
displacements, when modelling a finite elastic body. Moreover, a “subtle” 
improvement was proposed for the interpolation of traction forces, in the case of 
curved boundaries, which was meant to just simplify the numerical 
implementation. In the present paper, it is concluded that the proposed 
improvement is in fact a necessary one if strict consistency of the formulation is 
required and more emphatically if a consistent hypersingular formulation is to be 
implemented. It is also shown that the correct hypersingular formulation requires 
that the discontinuous parts (two free terms) of the matrix H be obtained 
independently from the matrix G. Motivation of the present developments was the 
application of the hybrid boundary element method to strain gradient elasticity, 
which only makes use of the matrix H together with its hypersingular counterpart. 
Although this paper is of a rather theoretical nature, a simple numerical example 
is shown to illustrate the necessity of the proposed improvements. 
Keywords: boundary elements, weighted-residual methods, hypersingular 
formulation, curved elements. 
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1 Introduction 

The hypersingular formulation of the collocation boundary element method seems 
to have been consolidated almost two decades ago with the seminal works done 
mainly by Guiggiani and some co-workers (as reviewed in Reference [1]) and 
Mantic and Paris [2], as well as taking into account the conceptual remarks made 
by Mukherjee [3], to mention just one complementary contribution. Since then, 
several numerical implementations reported in the literature apparently attest the 
appropriateness of the proposed developments. However, there still are some 
conceptual issues to be addressed as a result of the theoretical inquiries carried out 
starting from variational principles and consistency checks of the classical, 
collocation boundary element method [4–6]. Motivation of the present 
developments is a variationally-based application of the boundary element method 
in the strain gradient elasticity [7, 8], from which it turns out that the interpolation 
function proposed in Reference [5] for the evaluation of the single-layer potential 
matrix is not just a subtle improvement of the boundary element method, but a 
decisive requirement when dealing with hypersingularity and curved boundaries. 
This is particularly necessary if consistency of the formulation regarding rigid-
body rotation is to be checked, in a two-dimensional (2D) implementation (since 
an isoparametric 3D implementation can only be proved fully consistent for a 
restricted class of boundary elements). The most important conceptual 
contribution of the present paper is probably the demonstration that the 
hypersingularity features of the double-layer potential matrix should – and in fact 
can – be dealt with independently from the corresponding term of the single-layer 
potential matrix. This sheds light on some hitherto elusive – if not unduly ignored 
– features of this formulation. 

1.1 Problem formulation 

A simple, consistent derivation of the BEM was presented in Reference [5] and 
shall not be repeated here. However, it should be restated that one is dealing with 
the static analysis of an elastic body submitted to traction forces it  on part   of 

the boundary and to body forces ib  in the domain . Displacements iu  are known 

on the complementary part u  of  . One is looking for an adequate 

approximation of the stress field that satisfies equilibrium in the domain 

 , 0ji j ib     in  , (1) 

also satisfying the boundary equilibrium and compatibility equations, 

 ji j in t    along   ,  ii uu    on  u, (2) 

where jn  is the outward unit normal to  . Indices i, j, (also k, l) may assume 

values 1, 2 or 3, as they refer to the coordinate directions x, y or z, respectively, 
for a general 3D analysis. Sum is indicated by repeated indices. Particularization 
to 2D analysis as well as to potential problems is straightforward.  
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1.2 The fundamental solution 

The conventional, collocation boundary element method may be derived for 
fundamental solutions 

ij  and 
iu  given as 

   mijmij p , (3) 

   msm

r

isimi pCuuu  )( , (4) 

where r

isu , for rns 1 , are rn  rigid-body displacements that are multiplied by 

in principle arbitrary constants smC , and 
mp  are arbitrary (virtual) force 

parameters, with m characterizing both location and direction of application of 

mp . Then, 

ijm  and 
imu  are functions – with global support – of the coordinates 

and directions of 
mp  referred to by m (the source point), as well as of the 

coordinates and directions referred to by i (the field point), where the effects of 

mp  are measured. 

1.3 Numerical boundary discretization of displacements and forces 

The displacements iu  and the traction forces it  are the problem’s unknowns along 

  and u , respectively. They are approximated along   as  

 nini duu  , (5) 

  ati i it t t J J u t     , (6) 

where nd , for dnn 1 , is a vector of dn  nodal displacements and 

( , )in inu u    are interpolation functions with local support, usually piecewise 

polynomials chosen as functions of the parametric variables ( , )  , for 3D 

problems, in such a way that, at the nodal points, ininu  . Since the traction forces 

it  are surface attributes, the tn  parameters t  are also surface attributes that 

depend on the outward normal in  of the boundary point at which t  is physically 

attached. Generally, dt nn  , as the boundary   may not be entirely smooth, with 
more than one normal at some points. The interpolation functions ( , )i it t     

also have local support and should be consistently defined as in eqn (7), where iu   

are given piecewise as the same polynomials inu  for the displacements of eqn (6), 

J  is the Jacobian of the coordinates transformation along the boundary segment 

and 
at

J


 is the value of J  at the nodal point  , so that i it    similarly as for 

the displacements.  
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1.4 Isoparametric formulation and a first consistency check 

The boundary geometry is approximated from the nodal attributes using the same 
interpolation functions inu  of eqn (10), which consists in an isoparametric 

representation of the problem. This is expressed as 
 

 i in nx u x , (7) 
 

where nx  are nodal Cartesian coordinates and ( , )i ix x    are the Cartesian 

coordinates evaluated for the parametric variables ( , )  . For a generally curved 

boundary segment expressed according to eqn (7), a general linear displacement 
field given nodally as lin

nd  in eqn (5) is exactly reproduced along ( , )  . This the 

basis of a 0C  formulation of the finite element method – a higher order 
displacement field can be only approximately represented. 
     For a 2D problem, the outward unit normal to a boundary segment is given in 
terms of a single parametric variable   by 
 

 
1x

y

n y

n xJ

   
     

, with 2 2J x y   . (8) 

 

Since, from eqn (7), i in n in nx u x u x    , eqn (8) may also be written in indicial 

notation in terms of the nodal values n  of the outward unit normal as 
 

  ati in J J u n     (2D problems). (9) 
 

     For a 3D problem, 

 
, , , ,

, , , ,

, , , ,

1
x

y

z

n y z y z

n x z x z
J

n x y x y

   

   

   

  
        
      

, (10) 

 where 

     2 2 2

, , , , , , , , , , , ,J y z y z x z x z x y x y                  . (11) 

Since eqn (10) involves products of derivatives, it is obtained instead of eqn (9) 
 

  ati in J J u n     (3D problems, in general). (12) 
 

It may be checked that this latter equation is only exactly satisfied for linear (three-
node) and quadratic (six-node) triangles as well as for the linear (four-node) 
quadrilateral element. 
     As a result, a constant stress field can be exactly reproduced according to 
eqn (6) for any curved 2D boundary element – compare with (9) – whereas this is 
only conditionally true in the 3D case.  
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1.5 Basic equation of the collocation boundary element method 

The collocation boundary element method, as given in the literature, is stated as 

 d d d
ext

jim j in mn n im i im in u d u t t u b   

  

                 , (13) 

where, for brevity and since it is of no concern for the present developments, an 
error term that multiplies the constants smC  of eqn (4) is dropped, as compared 

with the consistent derivation of References [4, 5]. Equation (12) may be written 
in matrix format as 

  Hd Gt b , (14) 

where   dndn

mn RH H  is a kinematic transformation matrix,   tndn

m RG  G  

is a flexibility-type matrix and   dn

m Rb b  is a vector of nodal displacements 

equivalent to the applied body forces. The product T p Hd  has the meaning of 

virtual work, where mp  p  are the virtual forces introduced in eqns (3) and 

(4) [5]. The first motivation for introducing the definition of it   as in eqn (6) was 

the simplification obtained in the evaluation of G , for curved boundaries, since 
the Jacobian of d  cancels out. It can be now seen, according to the previous 
Section, that, for a 2D problem with an isotropic material, eqn (13) holds, as stated, 
exactly for a general linear displacement field, which is not the case of the hitherto 
proposed boundary element implementations [9]. For a 3D problem, eqn (6) 
provides only conditionally an exact statement for a linear displacement field, but 
is nevertheless a simpler and more accurate formulation. The single-layer potential 
matrix G is in general rectangular, as stated in eqn (13), since the traction forces 
depend on the outward normal to the boundary. The fact that G is rectangular 
should not hinder the correct proposition of a numerical model and the ultimate 
evaluation of all relevant quantities of a mechanical problem [9]. The use of 
different traction forces at a boundary corner leads to locally more accurate results 
than as in terms of the equivalent nodal forces of the finite element method. 
     The double-layer and single-layer potential matrices H  and G  comprise in 
their definition singular and improper integrals, respectively, when source (index 
m) and field (index either n or  ) refer to the same nodal points. Then, special care 
must be taken in the numerical integrations. Equation (13) follows the most 
common developments of the literature, in which the boundary ext  encloses the 

singularity, or source, point characterized by the index m. Three mathematically 
equivalent forms of the matrix mnHH  are [6] 

 
d d

d d

ext

fp dis

mn jim j in jim j in mn

jim j in jim j in

H n u n u

n u n u

  

 

 

 

 

 

    

   

 
 

, (15) 
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using   as the boundary that leaves the source point outside the domain (meaning 
that the fundamental solution is actually analytical in  ), as illustrated on the left 
of Figure 1 for the 2D case. The expression used in eqn (13) is the second one both 
in eqn (15) and in the Figure, with the integration ultimately carried out, as 
required in a direct numerical evaluation, for the boundary split into a finite part 
and a discontinuous part, as illustrated on the right of both eqn (15) and Figure 1. 
The procedures for the numerical evaluation of the finite and discontinuous parts 
of the integral in eqn (15), for either 2D or 3D problems, is well documented in 
the literature and shall be not repeated herein.  
 

 

Figure 1: Illustration of the three mathematically equivalent forms of eqn (15) 
for a bounded domain [5]. 

2 Hypersingular implementation of the matrix H 

2.1 Preliminary developments 

The complete theoretical development of the hypersingular formulation of the 
collocation boundary element method was primarily formulated by Guiggiani and 
co-workers, as reviewed in Reference [1], who also credits valuable independent 
achievements to Mantic and Paris [2]. Their line of reasoning, which intertwines 
the matrices H and G in the evaluation of boundary displacement derivatives in 
the Cartesian coordinate directions, shall not be reviewed at present. The relevant 
fact to be brought to light is that, in the variational, hybrid boundary element 
formulation, use is made only of the matrix H, and a different line of reasoning is 
necessary when dealing with problems of gradient elasticity, for instance [8]. The 
following development is proposed for the first time, to the author’s best 
knowledge.  
     Although not shown before, let y explicitly characterize the Cartesian 
coordinates of the source point m (to which the unit point forces mp   of eqns (3) 

and (4) are applied) and x be the field point, where the effect of mp   is evaluated 

and along which integration is ultimately carried out on the boundary eqn (15) – 
this seems to be a common notation in the literature, as given by Guiggiani  [1], 
for instance, although Mukherjee [3] uses exactly the oppose. 
     The first expression of the double-layer potential matrix H in eqn (15) is 
derived – prior to the discretization of the boundary displacements iu  as in eqn (5) 

– with respect to the normal direction kη  of the boundary point at which the 

source is applied: 
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, ,

,

,

d ( , ) ( ) ( ) ( )d ( )

( , ) ( ) ( ) ( )d ( )

( , ) ( ) ( ) ( )d ( )

fp

disc

jim k j k i jim k j k i

jim k j k i

jim k j k i

n u n u

n u

n u

   

 

 

 

 









  

 

 

 




y x x y x x

y x x y x x

y x x y x x .

 (16) 

(The Greek letter   has already been used to characterize one of the boundary 

parametric variables for a 3D implementation, as in eqns (10) and (11). However, 
this latter use, k , is indexed, which helps to keep variables apart.) The left-hand 

side of the above equation uses the compact notation of the paper, whereas the 
explicit dependence on source and field variables is shown on the right. The 
integral is also shown as split into a finite and a discontinuous part, following 

the notation of eqn (15). In allusion to Guiggiani’s developments, 
fp and 

disc
correspond exactly to 

0
lim

e   and 
0

lim
s  , respectively, also using in the 

following a sphere of radius   to characterize the split domains illustrated in 
Figure 1. Guiggiani [1] does not seem to like resourcing to a finite-part integral, 
whereas Mukherjee [3] makes some not so clear distinction between a (Hadamard) 
finite-part integral and a Cauchy principal value. However, as proposed in 
Reference [10], the finite part of a hypersingular integral can be evaluated entirely 
on mathematical terms and independently from the concept of a Cauchy principal 
value. 
     Next, let ( )iu x  in eqn (16) be expanded about  ( 0)iu  y  as a series of  : 

 
      2 2

( 0)
( ) ( 0) ( ) ( )i

i i i i

d u
u u O u q O

d


    




      
y

x y y y . (17) 

In this equation, ( 0) y y  is explicitly written to emphasize that  iu y  as well 

as it derivatives are single-valued functions. The normal derivative 

    i iq d u dy y  is introduced to simplify notation, but subject to posterior 

interpretation. Adding and subtracting terms to the integrals of eqn (16), it results 

 

, ,

,

,

,

d ( , ) ( ) ( ) ( )d ( )

( , ) ( ) ( ) ( ) ( ) d ( )

( ) ( ) ( , ) ( )d ( )

( ) ( , ) ( ) ( ) d ( )

fp

disc

disc

disc

jim k j k i jim k j k i

jim k j k i i i

i k jim k j

i jim k j k

n u n u

n u u q

u n

q n

   

  

 

  

 

 













  

     

 

 

 






y x x y x x

y x x y x y y x

y y y x x x

y y x x y x .

 (18) 

The underlined integral terms are the same ones of eqn (16). The terms in brackets 
in the second row correspond to the expansion of the displacement ( )iu x  shown 

in eqn (17). It is justified to place  iu y  and its derivative, as single-valued 

functions at ( 0) y y , outside the integrals of the third and fourth rows. Since 

the singularity of the product , ( , )d ( )jim k  y x x  is of order 1( )O    for either a 2D 
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or a 3D problem and the terms in brackets are of order 2( )O  , according to 

eqn (17), the whole integral in the second row of the above equation vanishes when 
0  . 

      The indicated finite-part integral in the first row of this equation means that 
only the boundary displacement ( )iu x  is to be interpolated, in the numerical 

implementation stage, according to eqn (5). 
     The integrals of the third and fourth rows of this equation are dealt with 
separately in the following Sections. However, it is worth already noticing the 
subtle difference in allocating ( )k y  either outside or inside the integrals. This 

will be elucidated later on in the frame of a mechanical interpretation. It can be 
advanced that, in the third row, the nodal displacement  iu y  is independent from 

the local boundary geometry given by disc , and ( )k y  just denotes the direction 

of a fixed, applied virtual double force. On the other hand, ( )iq y  in the fourth row 

denotes a displacement gradient that is normal to the boundary, characterized by 
( )k y , which must be considered as varying along disc . 

2.2 Evaluation of the integral in the fourth row of eqn (18) for a 2D 
problem 

In the following, it is shown how to evaluate the term in the fourth row of eqn (18) 
for the 2D problem, with results that can be extrapolated to the 3D case, as carried 
out in the expanded version of the present paper. In matrix format, 

,

2

2

2 2

0 1 1 0(1 2 ) 1
2 2

1 0 0 14 (1 )

22
4

24 (1 )

jim k j k

x y x y k k

x x y

k k
x y y

n

r r r r
n n n

r J n

c s cc csr r r
n

s c sr n ncs s

 

   
    

  


    

 

                                  
                       

  

(19) 
with the notation x r c  and y r s , for simplicity. 

     The term , d
disc

jim k j kn  


  in eqn (18) has the meaning of gradient double 

tractions that perform virtual gradient work on the gradient displacements ( )iq y , 

which are by definition located at the source point y . Then, k  must be aligned 

with iq , that is, point outward along the circular exclusion boundary. This justifies 

writing *
, ,jim k j k im k kn p     in polar coordinates for integration over an arch of 

circle of arbitrarily small radius  , centered on the singularity point and spanning 
from    to   , in terms of the boundary coordinate   that substitutes for  . 

Since d d   , 1r n r       , 0r    , cos cx xn     , 

sin sy yn     , the expression of ,ji k j kn   becomes, in polar coordinates, 
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2

, 2 2 2

1 0(1 2 ) 2

0 14 (1 ) 4 (1 )jim k j k disc

c cs
n

cs s

 
     

    
        

, (20) 

and it follows that a corresponding matrix of free terms imC  is expressed as 

 
2

* 2
, 2

1 0 1
d

0 12 4 (1 )im im k k

cs c
C p

c cs







  
  









   
            
 , (21) 

which is bounded regardless of the value of  . As it turns out, the integral in the 
fourth row of eqn (18) leads to the same matrix of free terms as in the case of the 
classical elasticity – a result that can be extrapolated for the 3D problem. 

2.3 Evaluation of the integral in the third row of eqn (18) for a 2D problem 

The integrand in the third row of eqn (18) is also evaluated in polar coordinates 
for integration over an arch of circle of arbitrarily small radius  , centered on the 
singularity point and spanning from    to   , in terms of the boundary coordinate 
  that substitutes for  , according to the previous Section, although keeping 

( )k y  independent from  .  

     As proposed independently by Guiggiani [1] and Mantic and Paris [2] 
(although the subject is clearer and simpler in Guiggiani’s papers), the integral 

 
0 0

( )
lim d lim

f b
a



 

 
 



 
 


, (22) 

where ( )f   is bounded in the integration interval and not supposed to vanish as 

0  , can be formulated as the indicated sum of two terms. The first of them, 
b  , tends to infinity with 0   but must cancel with a similarly behaving term 

in the integral on the right in the first row of eqn (18), such that , djim k j k in u  


  

be ultimately bounded. In fact, the integral on the right in the first row of eqn (18) 
is evaluated in terms of finite parts, which means that its unbounded part is 
disregarded only because of its cancelling with b  . Then, a  is the only term of 

actual interest in eqn (22). Its evaluation is carried out by expanding a generic 
integration limit   about 0   in a Taylor series along the boundary, expressed 
as 

 2

0

( ) (0) ( )
d

O
d

    


   . (23) 

Since these developments do not present any conceptual difference to Guiggiani's 
proposition, one may skip further details and summarize that, using 

 0
3

0
0

22

d x y y x

d J




   
  , (24) 
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where   is the signed curvature of the plane curve ( )  , the evaluation of the 

finite-part integral (that is, without the infinite term 
0

limb





) in the third row of 

eqn (18) can be expressed as the matrix ima  of free terms: 

 ,

( ) ( )
( ) ( , ) ( )d ( )

2disc

im im
im k jim k j

f f
a fp n

   
 

   





   y y x x x , (25) 

where 

 

   

  
2

2

0 1 1 0(1 2 )
( )

1 0 0 14 (1 )

22
3

24 (1 )

im x y x y

x x y

x y
x y y

f s c c s

c s cc cs
c s

s c scs s

    
 

  
 

   

    
            

                
.

 (26) 

As observed by Guiggiani [1], if the boundary is straight, then 0    ; if the 

boundary is curved, but smooth at the singularity point, then    ,   
 

 

and         ( ) ( )im imf f    . In either case, 0ima  . 

3 Hypersingular implementation of the matrix G 

The single-layer potential matrix G, presented in eqns (13) and (14), has its normal 
gradient expression – prior to the discretization of the boundary traction forces as 
in eqn (6) – given in principle by the finite and discontinuous parts 

, ,

, ,

d ( , ) ( ) ( )d ( )

( , ) ( ) ( )d ( ) ( , ) ( ) ( )d ( )
fp disc

im k k i im k k i

im k k i im k k i

u t u t

u t u t

 

 

 

 

 

 

  

   

 
 

y x y x x

y x y x x y x y x x .
 (27) 

This is hitherto a development similar to the one of eqn (16), for the double-layer 
potential matrix H. However, whereas the displacement ( )iu x  in the definition of 

H is a single-valued function that can be expanded as in eqn (17), the traction 
forces ( )it x  are surface attributes that depend on the outward normal ( )in x  to 

( ) x  and, in the numerical discretization to be adopted, discontinuously defined 

from boundary segment to boundary segment. This justifies simply ascribing  

 ( ) 0it x  along disc , (28) 

with the result that only the finite part of eqn (27) is to be evaluated, although it 
involves a 1r  or 2r  singularity for 2D or 3D problems, respectively. 
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4 Conclusions 

As outlined, the double-layer potential matrix G is rectangular, in a consistent 
numerical implementation, which also makes use of an improved representation 
of the traction forces along the boundary, as surface attributes intimately related 
to the boundary outward normal through the Jacobian J . 

     The proposed hypersingular developments treat the single-layer and double-
layer potential matrices G and H independently from each other. This is proposed 
as conceptually superior to the developments in the technical literature. The 
necessity of such a proposition comes from the variational, hybrid boundary 
element method, which does not makes use of the matrix G, and thus needs to deal 
with the matrix H independently. Moreover, developments in the strain gradient 
theory of elasticity have led to the present developments. To be emphatic, 
developments other than the present ones do not lead to verifiably consistent 
results in gradient elasticity [8]. 
     The singular and hypersingular implementations of the collocation boundary 
element method can be compactly represented as 

 
0

R R R RR

fp disc

d d uu t
fp disc disc fp

d d q uu t

 

  

  
                           

H H d bG
t

H H H q bG
, (29) 

where the first row of equations is eqn (14) and the matrix H is represented by its 
finite and discontinuous parts. The second row of equations shows on the left-hand 

side R

fp

d
H  corresponding to the term on the right in the first row of eqn (18), R

disc

d
H  

corresponding to the term on the third row of eqn (18) and developed in 
Section 2.3, and R

disc

q
H  corresponding to the term on the fourth row of eqn (18) and 

developed in Section 2.2. The normal displacement gradients q  were introduced 

in eqn (17) and have the same boundary distribution and orientation of the traction 

forces t . The matrix R

fp

u t
G  corresponds to the finite part representation of the 

gradient of G given in eqn (27), keeping in mind, according to eqn (28), that its 
discontinuous counterpart is void. 
     The simplest conceivable numerical verification of eqn (29) is proposed for the 
example of Figure 2, which simulates an isotropic, elastic body whose strongly 
curved boundary is given by two quadratic elements [8]. It is checked that the 
expanded matrix H of eqn (29) is orthogonal to rigid body translations and 
rotations. This equation is also exactly checked – within the numerical capacity of 
representation – for an applied linear displacement field, to which displacement 
gradients  and traction forces t present a strong variation along the curved 

boundaries. This kind of numerical assessment is more convincing that carrying 
out a convergence analysis that may just masquerade local errors related to the 
evaluation of H and G for a large number of degrees of freedom.  
 

q
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Figure 2: Very simple example with only two quadratic curved elements [8]. 
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