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Abstract 

We apply the localized collocation Meshless method (LCCM) to the solution of 
the problem of poro-elastic flow in a levee. In this approach the interaction 
between the water flow and soil is resolved in a time-accurate manner. 
Keywords: meshless methods, poro-elasticity. 

1 Introduction 

Water retaining structures, such as dams, canals, and levees, are essential for 
managing water resources. Building them with locally available soils is often the 
most economical, environmentally friendly, and sustainable method.  It is 
possible sometimes to economically construct these structures with masonry, 
concrete, or even alternative materials. However, they must be placed on high-
quality foundation soils for satisfactory performance wherever a solid rock 
stratum is not available at a reasonable depth. Therefore, the safety of most of 
these hydraulic structures depends on the capacity of the soils in the body and/or 
the foundation to resist the seepage forces created by the retained water. In other 
words, the soils should be able to safely seepage without damage or erosion of 
soils.   
     Often times, the seepage on the downstream sides of hydraulic structures is 
found to be laden with soil particles, a phenomenon commonly referred to as 
“sand boils”. Excessive seepage at specific points on the downstream side is 
indicative of preferential flow that may be due to anomalies in construction, 
foundation strata, or formation of internal voids due to movement of soils under 
excessive seepage forces. Formation and gradual expansion of internal voids is 
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frequently referred to as “progressive piping”.  This phenomenon may proceed 
without getting noticed as it occurs internally deep within the structure. The 
internal voids may collapse and form surface sinkholes, and in some cases may 
rapidly cause breaching failure of the structure. ICOLD [11] and Foster et al. [6] 
conducted statistical analyses of dam failures and found that internal soil erosion 
is a predominant cause of failure.    
     External forces caused by differential settlements, reservoir level fluctuations, 
and geological disturbances result in the formation of tiny internal cracks whose 
orientation and dimensions may vary widely owing to the differences in the 
magnitudes and directions of those forces. These tiny cracks may enlarge into 
large pipes depending on the severity of hydraulic and mechanical conditions in 
their vicinity. A fundamental consideration of these conditions is essential for a 
better understanding of the mechanism of progressive piping.  Zaslavsky and 
Kassiff [26], Vallejo [23], and Kakuturu and Reddi [15] have described these 
conditions and outlined some basic methods for their assessment. This paper 
presents an advanced numerical approach and demonstrates its applicability for 
analyzing the pore water pressures, hydraulic gradients and principal stresses 
around such cracks in earth dams. 

2 Background 

The first reservoir filling is considered as very crucial because soils might shrink 
and develop desiccation cracks during the period between construction and 
reservoir filling, and the stresses produced might enlarge the cracks. Zhang and 
Chen [27] reported their analysis of the seepage failure mechanism of a 71-m 
high Chinese rockfill dam that failed catastrophically during its first reservoir 
filling in 1993. During service life, cracks may develop, particularly during 
intermittent dry periods that also witness differential settlements of structural 
components caused by the compression of the foundation, or even by minor 
unnoticed earthquakes. Lakshmikantha et al. [16] conducted laboratory 
experiments on clayey soils and employed image analysis techniques for 
understanding the pattern of cracks and the internal and boundary conditions that 
influence them.   
     A few examples of piping-induced major failures are that of Teton Dam 
described by Watts et al. [24], Chagrin River Dam in Ohio analyzed by Evans et 
al. [5], in addition to several cases described in ICOLD [11]. The Katrina 
disaster in Louisiana and frequent problems faced by levees along the 
Mississippi, Sacramento, and Red rivers have heightened the public concerns. 
Mansur et al. [17] reported the sand boils caused by piping along the Mississippi 
river. Sills et al. [22] inferred that piping was the probable reason for failure of 
some levees in New Orleans that were not overtopped during the Katrina 
hurricane. Hagerty [8, 9] provide a comprehensive and visual description of 
conditions that result in piping and methods for post-failure identification. 
Gattinoni and Francani [7] developed a model for studying the instability 
triggered by piping and applied it to the Stava Valley disaster that took place in 
Italy, 1985.  
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     Johansen and Eikevik [13] described the internal erosion suffered by the Jukla 
Dams in Norway, exhuming operations that confirmed piping, and the 
rehabilitation measures. The internal erosion and progressive piping was 
detected in several experimental investigations of problem-riddled levees and 
dams. Studies by Chen et al. [3], Sjödahl [21], Inazaki [12], and Hung et al. [10] 
relied upon non-invasive geophysical methods that provided qualitative evidence 
of progressive piping.  
     Though thousands of tiny cracks may develop in a hydraulic structure during 
a year, most of them may self-heal with only a very few having a likelihood of 
growing larger and result in progressive piping. Developing a mechanistic 
understanding of progressive piping has been undertaken by Sellmeijer and 
Koenders [20], Ojha et al. [18], Kakuturu and Reddi [15], Bonelli et al. [1], El 
Shamy and Aydin [4], and Bonelli and Brivois [2] while recent research by Ojka 
et al. [18], and Yi et al. [25] has focused on the transient nature of piping. 
Kakuturu and Reddi [14] have described the experimental methods for 
evaluation of some soil properties that influence progressive piping. 
     It can be summarized that the pore water pressures, hydraulic gradients, and 
principal stresses in the region surrounding the tiny cracks are the prime external 
drivers of progressive piping. These factors in conjunction with soil properties, 
viz., shear strength, gradation, interlocking, cohesion, particle transportability, 
pore water chemistry, govern the fate of tiny cracks. In this paper, we adopt a 
numerical approach based on a novel Localized Collocation Meshless Method 
(LCMM) [28–32] for studying the fate of cracks under transient loading of a 
levee due to variable winds, storm surges, and cyclic variations of reservoir 
levels. 

3 The governing equations of poro-elasticity 

The equations that govern the flow of a fluid through a poro-elastic medium are 
the Navier equation coupled with the Richards equation [1] as: 
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Here, p  is the pore pressure, f  is the porosity of the medium, k  is the 

permeability of the medium, and 
   
bf , rf , mf

 are respectively the compressibility, 

density, and viscosity of the fluid flowing through the porous medium. Notice 
that the two governing equations in (1) are strongly coupled (two-way) as the 
pore pressure appears on the right-hand side of the Navier equation while the 
deformation field dilatation,

   ( ⋅

u) , appears on the right-hand side of the 

Richards equation.  An important parameter in flow through porous media is the 
hydraulic conductivity which is defined as: 

 

    
Kh =

krf |

g |

mf

 (2) 

Boundary Elements and Other Mesh Reduction Methods XXXIV  235

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Modelling and Simulation, Vol 53, © 201  WIT Press2



The Darcy velocity of the flow through the porous medium is defined as: 
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And, therefore, the actual front velocity of the flow is given by: 
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The front velocity of the flow, fV


, is used to track the location of the saturation 

time within the porous medium by adopting a Volume-of-Fluid (VOF) approach 
[2] as it is done for two-phase flows. Thus, the location of the saturation 
(phreatic) line, s , at any time-level can be traced by a transport equation as:  
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(5) 

And, therefore, the VOF parameter, s , can be used to weight the value of the 
physical properties between the saturated and unsaturated values as: 

 
   
G = 1 - s( )Gu + sGs  (6) 

where, for instance, uG  is the shear modulus of the unsaturated medium while 
sG  is the shear modulus of the saturated medium.  

     Notice also that the Navier equation in (1) is assumed to be in steady-state 
while the Richards equation in (1) is assumed to be in transient mode. This can 
be implemented in a scheme where the Richards equation is explicitly evolved in 
time using a time-accurate LCMM scheme as: 
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While the deformation field, u


, is updated quasi-statically. Updating the 
deformation field, u


, need not occur at every time-level but rather every few 

time-levels to accelerate the solution process. A simple systematic approach can 
be adopted to determine when the deformation field needs to be updated based 
on quantified changes of such field. 
     Furthermore, it is important to note that there is a very significant difference 
in the time scale at which the pressure signal, p , propagates throughout the 
medium in comparison to the time scale at which the saturation front, s , moves 
within the medium. This is evident in Eqn. (7) where it can be seen that fluid 

compressibility, 
  
bf , appears in the denominator of the right-hand side. The fact 

that the fluid compressibility, 
  
bf , is usually a very small number renders the 

propagation of the pressure signal, p , very fast in comparison with the velocity, 

236  Boundary Elements and Other Mesh Reduction Methods XXXIV

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Modelling and Simulation, Vol 53, © 201  WIT Press2



fV


, at which the saturation line, s , moves. Therefore, it is very important to take 

special care when progressing equations (5) and (7) as completely different time-
steps, tD , must be used. A simple solution to this issue is to solve the Richards 
equation in (1) as a steady-state equation using, for instance, a global GMRes 
iteration scheme. 

4 Localized collocation meshless method (LCMM)  

The Meshless formulation begins by defining a set of data centers, NC, 
comprised of points on the boundary, NB, and points in the interior, NI. These 
data centers will serve as collocation points for the localized expansion of the 
different field variables in the domain, , and on the boundary, , see Figure 1. 
The essential difference between boundary points and internal points is simply 
that boundary conditions will be applied at the first while governing equations 
will be applied at the latter. 
 

 

Figure 1: Scattered point distribution in a generalized domain. 

     The diffusion equation for a general field variable, f , in a generalized 

coordinate system, x , time, t , and a general diffusion coefficient, k , is taken as 
a model governing equation valid in the domain, W : 

 
    

¶f
¶t

(x, t) = k 2f(x, t)  (8) 

In addition, a set of generalized boundary conditions for the variable, f , on the 

boundary, G , are given by: 

 
    
b̂1
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where 
1 2 3

ˆ ˆ ˆ, ,andb b b  are imposed coefficients that dictate the boundary condition 

type and constrain values. A linear localized expansion over a group or topology 
of influence points, NF, around each data center is sought such that: 
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     The terms ja  represent the unknown expansion coefficients while the terms 

( )j xc  are expansion functions defined a-priori. NP is a number of additional 

polynomial functions, ( )jP x , added to the expansion to guarantee that constant 

and linear fields can be retrieved by the expansion exactly. Notice that the time 
dependency has been dropped as a different expansion will be performed for 

each time level and, therefore, the expansion coefficients, ja , will vary as time 

progresses. The expansion functions, ( )j xc , may be selected from the family of 

Radial-Basis functions (RBF). Such functions consist of algebraic expressions 

uniquely defined in terms of the Euclidean distance, ( )jr x , from a general field 

point, x , to an expansion point, jx , and we specifically utilize the inverse 

Multiquadric RBF as the expansion functions of choice: 2 2 1/2( ) [ ( ) ]x r x c   .

 

 

     The selection of an influence region or localized topology of expansion 
around each data center is easily accomplished by a circular (spherical in 3D) 
search around each data center. The search is automated to guarantee that a 
minimum number of points will be included and additional criteria, such as 
including all directions around internal data centers, are met. In addition, this 
search must guarantee that topologies around boundary data centers do not 
include opposing boundaries or points around a re-entry corner. Figure 2 shows 
typical collocation topologies for internal and boundary data centers including 
re-entry corners and opposing boundaries and the circular search to build the 
topology around an internal data center of a typical non-uniform point 
distribution. The collocation of the known field variable, f , (from the previous 

time level or iteration step) at the points within the localized topology, leads to 
the following in matrix-vector form: 

     {f} = [C ]{a}  (11) 

 

 

Figure 2: Collocation topology for internal, boundary, corner data centers and 
topology selection on a non-uniform point distribution. 

re

xc
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And, therefore, the expansion coefficients can be determined as:    {a} = [C ]-1{f}  

and the collocation matrix and the known vector are: 
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(12) 

     A simple optimization search is employed to determine the value of the 
inverse Multiquadric RBF shape parameter, c, used in every expansion over the 
different local topologies that cover the entire field. An initial guess for c is 
based on the ratio of the average distance between data centers in a topology to 
the number of points in the topology. A line search is performed to slightly 
modify the value of the shape parameter, c, until the resulting collocation matrix, 

[ ]C , yields a condition number in the range between 1110  and 1210  (in double-

precision). This range of condition number for the collocation matrix, [ ]C , has 

been documented to produce interpolations that render smooth derivative fields 
for a wide range of test functions. It is important to mention that the resulting 
collocation matrix, [ ]C , depends only on the geometrical distribution of the 

points within each localized topology and therefore, the optimization of the 
shape parameter, c, is performed at a setup stage before the solution process 
begins. However, there may be instances when running-time optimization of the 
shape parameter, c, may be necessary as, for example, when adaptive refinement 
is performed or when sharp discontinuities in the solution field are found.  

     The derivatives of the field variable are calculated at the data center, cx , of 

each topology, for any linear differential operator, L , can be applied over the 
localized expansion equation as:  

     
Lf(xc ) = ajLcj (xc ) + aj +NFLPj (xc )

j =1

NP

å
j =1

NF

å  (13) 

Or, in matrix-vector form, { } { }T
c cL Lf a= , and upon introducing the 

expansion coefficients, { }a , leads to: 

     Lfc = {L}T {f}
 
 (14)  

where 1{ } { } [ ]T T
cL L C -= . The coefficients of the vector { }L  of size ( ,1)NF  

directly interpolate any differential operation of the field variable distribution, 
{ }f , at the data center of the topology. Therefore, evaluation of the field 

variable derivatives at everyone of the data centers is provided by a simple inner 
product of two small vectors, { }L , which can be pre-built and stored, and { }f  
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which is the updated field variable distribution in the topology of the data center. 
Applying to the generalized diffusion equation, using a first-order finite-
differencing leads to: 

 ( )1 2 1 { } { }k k k k k T k
c c c c ct t Lf f k f f f k f+ += + D   = + D  (15) 

where the superscript, k , denotes the time level and tD  denotes the size of the 
time step. The solution field, { }f , at every point at the previous time level, k , 

can very efficiently yield the updated field variable value at each data center, cx , 

through a simple inner product of small vectors. Similarly, we find: 

 
1 2 3 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ{ } { }
c

T
c c

x

n
n

f
b b f b b f b f b

¶
+ =  ¶ + =

¶
 (16) 

where the interpolation vector, { }n¶ , yields the normal derivative of the field 

variable, { }f , at the boundary topology data center, cx . Ultimately, through 

some algebraic manipulation,  a simple relation can be arrived at to determine the 
boundary field variable at the current time level, 1k + , as: 1 { } { }k T k

cf f+ = G

where the boundary interpolation vector, { }G , is composed by a combination of 

the normal derivative interpolation vector, 
   {¶n} , and the boundary condition 

coefficients, 
1 2 3

ˆ ˆ ˆ, ,andb b b , and, therefore, can be pre-built at a setup stage for 

every boundary data center, 
cx . The normal derivative interpolation vector, 

   {¶n}, 

may be pre-built in one of two ways. A simple approach is to express this vector 
as a combination of derivative vectors in all directions times their corresponding 
unit normal vector components. For instance, in 3D Cartesian coordinates, this 
is:

   
{¶n} = {¶x}nx + {¶y}ny + {¶z}nz

. A slightly more involved but more stable 

approach is to generate additional internal points that “shadow” each boundary 
point in the direction of the normal vector into the domain, W , and use these 
shadow points to directly approximate the normal derivatives at each boundary 
data center, see Figure 3. 
 

 

Figure 3: Internal shadow points to compute normal derivatives. 

     The shadow point approach will mitigate the inherent inaccuracies of the 
directional derivative interpolation vectors of the truncated topologies of 
boundary data centers especially of those around corners and highly curved 

n j

 j

B o u n d a ry  P o in t
In te rn a l S h a d o w  P o in t
In te rn a l P o in t
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boundaries. Following this approach, the normal derivative interpolation vector 

is, { }{ } 1 / , 0...0, 1 / , 0...0
T

s sn r r¶ = - , where sr  is the distance from the boundary 

data center to its corresponding internal shadow point. Notice that all of the 
elements of the interpolation vector, except two, vanish. Additionally, higher 
order differentiation can be accomplished by simply inserting multiple rows of 
internal shadow points in the normal direction of each boundary data center. 
     The LCMM reduces the burden of the more common global interpolation 
methods by expanding the field variable locally around each data center to obtain 
its derivatives that are then used in time-marching or iterative schemes. This 
approach generates multiple but small interpolation matrices rather than the large 
and fully-populated global interpolation matrix of the standard global 
interpolation methods. However, since the approach relies on expanding known 
values of the field variables, it is applicable to explicit time-marching schemes 
and inapplicable directly to steady problems. Moreover, time marching can 
always be considered as a relaxation scheme for the iterative solution of steady-
state problems. We also utilize upwinding schemes for convectively dominated 
flows utilizing the concept of  “Virtual Points”, see Figure 4. 
 

 

Figure 4: Upwinding with “Virtual Points” around the data center, cx . 

5 The levee problem 

The problem of water flow through a compacted sand poro-elastic levee  
combines the effects of storm surges to the levee as well as the progressive 
piping (crack propagation) within the levee due to the pore pressure and stress 
field. The schematics of this problem are illustrated in Figure 5. The trapezoidal 
portion of the levee is 40m  at the base and 3m at the top with a height of 6m . 
The water level on the left-hand side of the levee is 1m  from the top of the 
levee. A 3m -long pipe (crack) inclined 45 is included 8m  from the left-hand  
 

 

Figure 5: Groundwater flow through a poro-elastic sand levee problem. 
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Figure 6: Hydrostatic pressure levels and water flow vectors within the levee. 

corner of the trapezoidal section of the levee. The levee hydraulic conductivity is
710 /hK m s-= , the Poisson ratio 0.35n = , the modulus of elasticity 

120E MPa= , the dry density 
31500 /kg mr = , the specific gravity of soil 

particles 2.65SG = , the porosity 
   f = 0.3 , the water density, viscosity, and 

compressibility are 3 3 10 21000 / , 10 ,and 4.55 10 /f f fkg m Pa s m Nr m b- -= = ⋅ = ⋅

respectively. The contour plots of hydrostatic pressure levels and water flow 
vectors within the levee and around the pipe are shown in Figure 6 after a steady-
state solution is achieved. The time progression of the saturation front within the 
poro-elastic levee at 20,40,60,80,100,120t =  days is shown in Figure 7. 
 

 

 

 
Figure 7: Time progression of the saturation front: 20, 40, 60, 100 and 120 

days. 

6 Conclusions 

We applied the LCCM to poro-elastic flow in a levee resolving the interaction 
between the water flow and soil in a time-accurate manner. The method shows 
promise in applications to planned future studies of the piping problem.  
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