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Abstract 

Mathematical models and numerical methods have acquired increasing 
importance in almost all fields of research. A definitive validation so that these 
instruments can be fully employed in applications requires that they be subjected 
to experimental verification. In the present paper the electrolytic tank (based on 
dissimilar similitude) is used to solve problems of transport phenomena in 
porous media. In particular, we report a successive approximations method 
which makes it possible to completely solve any problem of permanent two-
dimensional flow in unsaturated aquifers with defined boundary conditions. The 
experimental technique adopted enables the applicability of the method, already 
used for one-dimensional flow, to be extended to two-dimensional flow. 
Moreover, for model analogy the decision to adopt the piezometric head instead 
of the suction head affords a more substantial overview of the problem defined 
by the flow equations. 
Keywords: numerical method, dissimilar similitude, electrical analogy, 
electrolytic tank, unsaturated media. 

1 Introduction 

When defining mathematical models and numerical methods that can interpret 
complex physical phenomena it is often necessary to make use of 
simplifications, the consequences of which need to be verified. Simplifications 
are almost always used to obtain computation procedures that make it possible to 
achieve sufficiently precise results for technical applications and, as a result, 
verifying the validity of the mathematical model or numerical method is often 
the most delicate phase of the study. The validation of a mathematical model and 
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numerical calculation methods is often performed through comparisons with 
other mathematical models having the same objective and/or regarding 
phenomena in which there is an affinity. Such techniques are favoured by the 
continual evolution of computers available at increasingly competitive prices. It 
should be noted that in more complex phenomena, where it is critical to define 
the equation limit conditions, problems regarding the reliability of the final 
results may be encountered. The most robust validation is therefore achieved 
either through a test using experimental data from the phenomenon being studied 
[1–4] (which however are not always readily available) or through experimental 
data obtained from a physical model, which may incur significant costs. In some 
cases, it is possible to carry out an experimental verification phase using physical 
models in dissimilar similitude which yield certainly appreciable results at 
contained costs [5, 6].  
     In line with these considerations, the present paper reports a methodology 
using an electrolytic tank for the solution of complex transport phenomena in 
porous media. In porous media it is not possible to identify a clearly 
distinguished surface between the saturated and the fluid-free areas because of 
capillarity, which results in an intermediate unsaturated area that is difficult to 
define. In this area the fluid is normally at a lower pressure than that of the 
surrounding environment (generally air at atmospheric pressure). Moreover, the 
flow fields of the saturated and the unsaturated areas are dependent on laws that 
do not entirely coincide.  
     The electrolytic tank, which is a physical model in dissimilar similitude based 
on electrical analogies, can be profitably employed to study filtration problems 
in saturated aquifers. This is achieved by exploiting the coincidence of equations 
describing the potential flow in a fluid and the passage of electric current through 
a conductor. In a 2-D potential flow, for instance, defining the velocity potential 
as Φ and the electric potential as ΦE  (in a Laplacian field), the velocity 
components are:  
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while the electric current components are:  
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where  is the resistivity. The continuity equations are thus, for the fluid: 
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and for the electrical system: 
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     A comparison of these equations shows that, excluding for now the constant 
parameter , it is possible to identify velocity potential and electric potential, 
which are components of the velocity and components of the electric current. 
     Although more complex, it is possible to perform the study on unsaturated 
aquifers in which the distribution of the piezometric heads is not Laplacian [9, 
10]. In the latter case, the aquifer piezometric head distribution is normally only 
verified, having already been determined by other means.  
     The present paper reports a successive approximations method, which 
arguably deserves greater consideration and diffusion in the international 
scientific community, which makes it possible to achieve the complete solution 
of any permanent two-dimensional flow problem in unsaturated aquifers whose 
boundary conditions have been defined.  

2 Mathematical definition of the problem  

As is well known, flow processes in porous media are regulated by the continuity 
equation and by Darcy’s Law. The general continuity equation in varying flow 
is: 

 qVdiv
t





 (3) 

where  is the filling degree, V is the filtering velocity and q is a parameter that 
takes into account any absorption of groundwater by root systems. Furthermore, 
Darcy’s flow equation is: 

 gradhkV   (4) 

where k is the permeability coefficient and h is the piezometric head. In dealing 
with flow in unsaturated media, the suction head  is usually defined as the 
opposite of the water expressed in the water column, i.e.:  = -p/γ . In this 
position, with the z axis upwards, the piezometric head is: h = z -  . Comparison 
of equations (3) and (4) provides:  

   qgradhkdiv
t





 (5) 

which in the case of permanent flow and in the absence of root systems reduces 
to: 

   0gradhkdiv   . (6) 

     The differential equation (5) is parabolic and can be integrated analytically 
only in some cases of one-dimensional flow with particularly simple boundary 
conditions. Equation (6) can also be analytically integrated in particularly simple 
cases of one-dimensional flow but, as it is elliptical, it can be interpreted through 
electrical analogy models such as electrolytic tanks.  
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     It should be noted that the problem can be solved numerically through 
mathematical models and suitably programmed computers. The numerical 
integration of differential equations, however, normally entails problems of 
accuracy due to truncation, convergence and stability errors that depend on the 
solution methods and schemes adopted (explicit and implicit methods, finite 
differences and finite elements procedures) [11–15]. 
     Moreover, unlike in saturated media, in unsaturated media the permeability 
coefficient k reported in the equations should be considered variable and 
dependant on the suction head  ; i.e.: k = k ( ). It should also be remembered 
that the function k ( ) presents a cycle of hysteresis due to the way in which the 
soil is filled and emptied by the fluid. It must therefore be assumed that the flow 
takes place during the filling or the emptying phase in order to consider k as a 
univocal function of  . Under this hypothesis, as k = k ( ), equation (6) yields: 
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for the function k ( ) the expression suggested by Gardner can be assumed 
(see [16]):  
    2

S c1kk    . (8) 

In this formula the parameters KS and c, which specifically define the nature of 
the soil, can in some of the elaborations performed by way of example be set to: 
KS = 1cm/day and c = 0.0025 cm-2, as suggested again by Gardner (see  [16]).   
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which for two-dimensional flow in the plane (x, z) becomes: 
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3 Electrolytic tank in Poissonian fields 

If the bottom of a two-dimensional electrolytic tank developed in the plane (x, z) 
is fitted with electrodes supplied by an AC potential Ub (x, z) variable from point 
to point, the electrolyte will be supplied through a capacitive effect with a current 
of intensity i(x, z) equal to:  

    z,xUz,xi b






 . (11) 

In conclusion, equation (7) can be transformed into: 

224  Boundary Elements and Other Mesh Reduction Methods XXXIV

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Modelling and Simulation, Vol 53, © 201  WIT Press2



where  is the pulse of the AC potential Ub (x, z),  is the dielectric constant of 
the tank bottom of thickness  and   is an operator indicating a /2 dephasing in 
advance. This introduction of current corresponds - in the approximation 
whereby the electrical field in the tank can be considered two-dimensional - to 
the existence of a distributed current source whose density is given by: 

    z,xU
s

z,xq b







 . (12) 

where s is the depth of the electrolyte in the tank. It is well known that for a two-
dimensional electrical field with sources distributed in accordance with equation 
(12), Poisson's equation holds: 

      z,xU
s

z,xqz,xU b
2 







  . (13) 

where  U (x, z) is the potential distribution in the tank and  is the electrical 
resistivity of the electrolyte.  
     A comparison of equations (10) and (13) highlights the possibility of making 
an analogy between filtration flow in an unsaturated medium and the electrical 
field in the electrolytic tank supplied by capacitors on the tank bottom. In 
particular, the piezometric head h needs to be placed in relation to the potential U  
by means of an analogy equation: 

 hU    . (14) 

where    is an operative analogy constant. Equations (13) and (14) combined 
yield: 
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which, combined with equation (10), yields: 
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 (16) 

from which it is possible to obtain the potential distribution on the bottom of the 
electrolytic tank  Ub (x, z) in the sought analogy. 
     Equation (16) shows that the voltage to be applied to the bottom of the tank 
turns out to be a fairly complex function of the pressure head and its spatial 
derivatives. Two problems in particular arise: the first is that the potential on the 
bottom of the tank may vary from point to point, making it necessary to have a 
large number of electrodes supplied at different potentials; the second is the fact 
that determining the potentials on the bottom would imply prior knowledge of 
the final solution of the problem. This problem is solved by proposing a 
successive approximations method. 
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4 Successive approximations method  

As the distribution of the piezometric heads h(x, z) is not known a priori and, 
therefore, it is not possible to proceed directly through equation (16), a 
successive approximations method has been set up. In order to reach the 
objective, equation (16) has been transformed into terms of just electric 
potentials by means of equation (14) to give the potential distribution on the 
bottom of the electrolytic tank Ub (x, z): 
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     This procedure entails reaching the exact potential distribution on the bottom 
by means of successive adjustments to the electrodes. That is to say, the bottom 
is subdivided into a sufficiently small number of elements and the potential is 
adjusted one electrode at a time through a procedure that gradually reaches the 
actual potential distribution.  
     First of all a value V0  is assigned to the ascending velocity of the water on the 
aquifer surface (at z = 0) which is assumed to be horizontal. On the basis of 
equation (4) it is possible to set: 
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which from an electrical standpoint on the basis of the analogy equation (14) 
gives: 
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     These equations supply the boundary conditions for the solution of the 
problem. Let us suppose that, after n successive approximations, we have 
reached a generic distribution of potentials on the bottom, which we will call 
Ubn (x, z). In order to achieve the boundary conditions, the electrode in the tank 
relative to z = 0 must be at voltage 0 and the derivative with respect to z of the 
voltage trend, again at z = 0, must have the value of equation (19). In achieving 
the latter condition, the value of the potential to attribute to the electrode at a pre-
fixed ordinate has to be determined (and is obviously calculated by the last 
approximation performed); let Utn be this potential value. Let us call the 
distribution of potentials in the tank resulting from the supplied power Un (x, z). 
If the distributions Ubn (x, z) and Un (x, z) satisfy equation (17), the problem is 
solved. If this is not the case, it is necessary to consider one of the elements in 
which the bottom has been subdivided, at the barycentre of which equation (17) 
is not verified, and then readjust its potential. This readjustment must be 
simultaneous with a readjustment of the potential Utn  as the variations Ubn (x, 
z) affect the distribution of U n(x, z) in the whole tank, while leaving Un (x, 0) = 
0 and the values of equation (19) equal, again for z = 0. The readjustment must 
be such as to ensure that equation (17) is verified at the barycentre of the 
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considered element. The new distribution of potentials obtained Ub(n+1) (x, z), 
Ut(n+1) and of potentials in the tank U (n+1)(x, z) represents the successive 
approximation. It has been experimentally found that, provided the elements into 
which the bottom has been subdivided are sufficiently small, this procedure 
converges on the solution of the problem. 

5 Experimental technique adopted  

In order to simplify the experimental procedures it is possible to use more 
specific measures in order to determine the potential to apply to the bottom 
element barycentre considered, so that equation (17) is verified.  
     First, the distribution of the potentials in the tank Un (x, z) obtained after n 
approximations can be considered, given the linearity of the electrical field 
equations, as the sum of the distributions  U’

n (x, z) and ULn (x, z) obtained by 
supplying the tank for a first time with a bottom voltage equal to Ubn (x, z) and 
with the electrodes in the tank earthed and for a second time without powering 
the bottom and with the electrodes in the tank set to the voltages 0 and Utn . At 
this point, in order to determine the values Ub(n+1) (x, z) and Ut(n+1)  relative to the 
successive approximation, it is necessary to perform three separate series of 
measurements. 
     In the first series the tank needs to be given the potential U’

n (x, z) by 
supplying the bottom with Ubn (x, z) and with the electrodes in the tank earthed. 
     In the second series the tank must be supplied only on the electrodes in the 
water with a potential 0 at the ordinate z = 0 and with another potential of our 
choice Ut0  at the ordinate z = L while disconnecting supply to the bottom. This 
supply creates a voltage in the tank which we will call UL0 (x, z). 
     Finally, the third series calls for the tank to be supplied only through the 
bottom electrodes element whose potential should be changed and which will be 
called the reference electrode R. The voltage supply to the latter electrode in this 
series of measurements will again be a value we choose U’’b0 . The electrodes in 
the tank and all the other electrodes on the bottom must be earthed. This creates a 
voltage in the tank which we will call U’’ (n+1)(x, z). 
     Now, similarly to the nth approximation, after (n+1) approximations the 
potential in the tank U (n+1)(x, z) can also be considered as the sum of the voltages 
U’ (n+1)(x, z) and UL (n+1)(x, z) obtained by supplying the tank a first time with the 
bottom voltages Ub (n+1)(x, z) and with the electrodes in the tank earthed, and a 
second time without powering the bottom and with the electrodes in the tank set 
to the voltages 0 and Ut(n+1) . 
     In turn the potential U’(n+1)(x, z) can be considered as the sum of the potential 
U’

n (x, z) and the potential obtained by setting the reference electrode R to a 
voltage of: 

       RRbnRR1nb1nb z,xUz,xUU    ; (20) 

if we then make: 

     011 tnnt UU    . (21) 
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and  

     0b1n1nb UU    ; (22) 

we can express the voltage in the tank  U (n+1)(x, z)  as: 

              z,xUz,xUz,xUz,xU 0L1n1n1nn1n    . (23) 

     In equation (23) the two constants (n+1)   and (n+1)  are unknown. Moreover, 
the potential distribution U(n+1) (x, z) must satisfy equation (17) at the point of 
coordinates xR and zR, the reference element barycentre R, and equation (19) at all 
points of the ordinate x = 0, that is to say at the aquifer’s free surface. 
     Equations (17) and (19) can therefore be applied in the above-considered 
points. In these two equations it is possible to measure or fix the value of all the 
quantities in play except for the two constants (n+1)   and (n+1)  which thus 
represent the only two unknowns and can therefore be easily determined. Once 
these constants have been determined, the values U t(n+1)  and Ub∆ (n+1) and, hence, 
the voltage distribution U b(n+1)(x, z)  and U (n+1)(x, z) are also determined. 
     By repeatedly applying the procedure to different bottom elements we get 
successive voltage distributions that verify equation (17) with increasingly 
greater accuracy. The successive approximations method can be stopped when 
equation (17) is held to have been verified all over the bottom with sufficient 
approximation. 
     In order to ensure a systematic performance of all three measurements and the 
calibration of the experimental installation, the circuit reported in figure 1 was 
set up. 
 

 

Figure 1: Experimental installation (schema). 
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     The electrodes on the tank bottom can be subdivided into those that should be 
powered EP and those that should be earthed EE

 during the various measurement 
or calibration phases. The different potentials to which the electrodes must be 
connected are obtained by means of the current divider DR fitted with the sockets 
S. The resistances of the divider are sufficiently low in order to provide the 
divider with a much lower output impedance than the tank’s input impedance. 
By means of the deviator switches D1 and D2 and the switch SW, it is possible to 
create the various power supply combinations by the oscillator O or to pass 
directly from calibration to the various measurement series. Measurements in the 
tank make use of the probe P whose signal is first amplified, then filtered onto 
the power supply frequency in order to eliminate much of the background noise 
and finally measured with a digital voltmeter. The amplifier’s input impedance is 
much higher than the output impedance from the tank to the probe. The deviator 
switch D3 is used to orient the voltmeter to read the tank signal or to check the 
stability of the supply voltage.  
     Great care was taken to ensure that the electrodes were properly earthed, 
when necessary, in order to avoid parasitic returns of capacitive currents. The 
same care was taken with the shielding and the earthing of the main parts of the 
electric circuit, as the frequencies adopted (1000 Hz) made it possible for the 
above mentioned parasitic capacitive voltages to arise.  

6 Conclusion 

The presented experimental technique entailed successive approximations and 
made it possible to use a physical model based on dissimilar similitude for the 
solution of a two-dimensional flow field of waters filtering through unsaturated 
media. The experimental installation, comprising an electrolytic tank, is based on 
the electrical analogy which employs the coincidence of equations describing 
potential flow in a fluid and the passage of electric current in a conductor.  
     In order to define the model’s analogy, we adopted the piezometric head h 
and not the suction head   as this enables a more substantial overview of the 
problem, as is expected in the usual flow equations.  
     The experimental technique consisted of modifying the distribution of electric 
potential on the tank bottom, which was subdivided into a number of sufficiently 
small elements, until the exact value was reached.  
     Normally this installation only makes it possible to verify the exactness of 
solutions already obtained by other means.  
     The described successive approximations procedure, on the other hand, 
makes it possible to reach a solution of flows that have not been determined in 
advance, starting from boundary conditions that are not easily defined, such as 
those relative to flow in unsaturated media (hence in a non-Laplacian field). In 
this sense, our work shows how the electrolytic tank constitutes a robust aid for 
the validation of mathematical models and numerical methods for which, in 
complex situations, an experimental verification is advisable.  
     It should be noted that the experimental technique adopted can be held to be 
congruent with the technique adopted numerically in relaxation procedures and 
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with the setting of finite elements mathematical models (in particular in the way 
of subdividing the bottom into finite dimension elements).  
     Our experiment shows that the additional error, caused by the size of the 
number of elements into which the tank bottom is subdivided is somewhat 
contained. Indeed, we observed an error of less than 4% for a subdivision of the 
bottom which fell from 100 elements to just 5 elements. It can thus be concluded 
that the division of the bottom into elements of finite dimensions does not create 
substantial difficulties in reaching a correct solution of the problem, and thus 
confirms the validity of experimental technique adopted.  
     Finally, it should not be forgotten that the interesting results obtainable with 
these analogical models are also appreciable from an economic point of view: 
indeed the cost of the installations needed for the experimental activities 
described appears relatively contained. 
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