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Abstract

In this paper the Boundary element method (BEM) was applied to simulate viscous
flow of ferrofluids under the influence of a homogenous external magnetic field.
We present a derivation of the boundary integral form of the vorticity transport
equation, which includes magnetic body force terms. Furthermore, discretization
and numerical solution of the coupled flow and heat transfer problems are
presented.

The derived numerical model has been used to study the effect of a homogenous
external magnetic field on the natural convection of ferrofluids in a differentially
heated enclosure. We established that the effects are negligible for magnetic
Rayleigh numbers less or equal to the flow Rayleigh number. On the other hand,
the magnetic body force changes the flow field significantly and contributes to the
instability of the flow.
Keywords: boundary element method, velocity-vorticity formulation, ferrofluid,
natural convection, magnetic field.

1 Introduction

A ferrofluid is a colloidal suspension of magnetic nanoparticles. The flow field
of these fluids can be significantly altered by the application of magnetic fields.
They can be used to develop microscale heat exchangers in MEMS devices. Since
in miniature devices the flow is limited to low Reynolds numbers the heat is
transferred mainly by diffusion, the magnetic field can be used to manipulate and
enhance convection.

Recently many researches have studied ferrofluids under the influence of the
magnetic field (Hong et al. [4], Lajvardi et al. [5], Tynjälä et al. [13]) for a wide
variety of applications. In this work we derive a boundary-domain integral form of
the vorticity transport equation for a ferrofluid and present its numerical solution.
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Thermal convection of a ferrofluid under a homogenous external magnetic field is
investigated as the model problem.

2 Governing equations

The magnetic field in the ferrofluid conforms to the Maxwell’s equations in static
form as

�∇ · �B = 0, �∇× �H = 0, (1)

where �B is the magnetic field density and �H is the magnetic field strength. They
are related by

�B = µ0(1 + χm) �H, (2)

where χm is the magnetic susceptibility of the ferrofluid and vacuum permeability
µ0 = 4π · 10−7N/A2. The magnetic field causes magnetization of the ferrofluid.
For small variations of temperature, which will be the subject of this investigation,
the change of magnetization of the ferrofluid dM = −(∂M/∂T )HdH +
(∂M/∂H)T dT can be written in linearized form as

M − M� = −K(T − T0) + χr(H − H�), (3)

where K = −(∂M/∂T )H is the pyromagnetic coefficient, χr = (∂M/∂H)T

is the differential magnetic susceptibility of the fluid (Ganguly et al. [2]), M�

and H� are the equilibrium values around which linearization is preformed and
T0 is the reference temperature. The pyromagnetic coefficient depends on the
thermal disorientating motion of magnetic nanoparticles, thermal dependence of
magnetic moment, mp of particles and thermal expansion of the fluid. The first
effect does not contribute in the case of single domain magnetic nanoparticles,
thus (Berkovsky et al. [1]) pyromagnetic coefficient can be expressed as

K = M(βm + β), (4)

where β = −(1/ρ)(∂ρ/∂T ) is the thermal expansion of the fluid and βm =
−(1/ρ)(∂mp/∂T ) is the relative temperature coefficient of the magnetic moment
of a single particle. For most ferrofluids it is valid that β � βm for temperatures
below the Courie point (Müller and Engel [7]). Thus, by neglecting βm, we rewrite
equation (3) as

M = M� − Mβ(T − T0) + χr(H − H�) (5)

Taking into account that the fluid does not possess any residual magnetization
when there is no magnetizing force, M� = 0, H� = 0 and assuming that the
differential magnetic susceptibility is constant over the range of H considered,
χr = χ0, we have

M

H
= χm =

χ0
1 + β(T − T0)

, (6)

where χm is the total magnetic susceptibility, which forms an equation of state
between magnetization and magnetic field strength, �M = χm

�H . In this setting the
magnetic susceptibility is a function of temperature only.
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In this paper we assume an incompressible viscous Newtonian fluid with
constant material properties: density ρ, viscosity ν, specific heat capacity cp and
thermal conductivity k. The continuity equation (mass conservation law) within
this approximation

�∇ · �v = 0 (7)

requires the velocity field �v to be solenoidal, i.e. divergence free. In order to
write the Navier-Stokes equations buoyancy is modelled within the Boussinesq
approximation. Density variations with temperature ρ(T ) = ρ[1 − β(T − T0)]
are considered only in the buoyancy term and defined by the thermal volume
expansion coefficient β and the temperature difference. The momentum transport
equation reads for a couple flow and heat transfer problem of a ferrofluid in a
magnetic field as

∂�v

∂t
+ (�v · �∇)�v = −1

ρ
�∇p + ν∇2�v − β(T − T0)�g +

1
ρ
( �M · �∇) �B, (8)

where the last term in the equation is the Kelvin body force per unit mass
�fK = 1

ρ ( �M · �∇) �B. Using equations (1) and (2) we rewrite the Kelvin body force
as

�fK =
µ0χm

2ρ
(1 + χm)�∇( �H · �H) +

µ0χm

ρ
�H( �H · �∇χm). (9)

Since the magnetic susceptibility depends solely on temperature, χm = χm(T ),
we can relate its gradient with the temperature gradient by making use of equation
(6):

�∇χm =
βχ0

(1 + β(T − T0))2
�∇T. (10)

Using (6) and (10) the Kelvin body force in equation (9) can be rewritten as

�fK =
µ0χ0β

ρ

(
1
2

1+χ0
β + (T − T0)

(1 + β(T − T0))2
�∇H2 +

χ0
(1 + β(T − T0))3

�H( �H · �∇T )

)
.

(11)
The Kelvin body force has two terms. The first vanishes if the magnetic field is

uniform, i.e. if there are no magnetic field gradients. The second vanishes, if the
ferrofluid temperature is uniform, i.e. if there are no temperature gradients.

Since we are solving a coupled momentum - heat transport problem, the field
functions were non-dimensionalized in the following manner: �v → �v

v0
, �g → �g

g0
,

�r → �r
L , �ω → �ωL

v0
, t → v0t

L , T → T−T0
∆T , p → p

p0
, v0 = k

ρcpL , H → H
H0

, where
p is pressure, L is the characteristic length scale (height of the hot and cold walls
in our model problem) and �ω is vorticity. With the above stated assumptions the
momentum transport equation (momentum conservation law) in non-dimensional
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form reads as:

∂�v

∂t
+ (�v · �∇)�v = −PrRa T�g − 1

Eu
�∇p + Pr∇2�v + PrRam

�f ′
K ,

�f ′
K =

1
2

1+χ0
β∆T + T

(1 + Tβ∆T )2
�∇( �H · �H) +

χ0
(1 + Tβ∆T )3

�H( �H · �∇T ), (12)

with the Prandtl Pr, enclosure height based Rayleigh Ra, magnetic Rayleigh Ram

(Ganguly et al. [3]) and Euler Eu numbers defined as:

Pr =
νρcp

k
, Ra =

g0β∆TL3

ν k
ρcp

, Ram =
µ0χ0H

2
0L
2β∆T

ρν k
ρcp

, Eu =
ρ0v

2
0

p0
.

(13)
Furthermore, we assume that no internal energy sources are present in the fluid.

We will not deal with high velocity flow of highly viscous fluid, hence we will
neglect irreversible viscous dissipation. With this, the internal energy conservation
law, written with temperature as the unknown variable, reads as:

∂T

∂t
+ (�v · �∇)T = ∇2T. (14)

2.1 Velocity-vorticity formulation

The mass conservation law (7) and momentum transport equation (12) are
rewritten in velocity-vorticity form by introducing vorticity �ω. Vorticity is defined
by the curl of velocity, �ω = �∇× �v. After taking a curl of the governing equations,
we obtain

∇2�v + �∇× �ω = 0 (15)

the kinematics equation, which relates the velocity and vorticity fields for every
point in space and time. Both, the vorticity and velocity fields must be solenoidal,
in order for this equation to be fulfilled.

The final form of the vorticity transport equation reads as

∂�ω

∂t
+ (�v · �∇)�ω = (�ω · �∇)�v + Pr∇2�ω −PrRa�∇× T�g + PrRam

�∇× �f ′
K . (16)

Equation (16) equates the Stokes rate of change of vorticity on the left hand
side with the vortex twisting and stretching term, the diffusion term, buoyancy and
Kelvin body force term on the right hand side.

3 BEM solution of the transport equation

3.1 Boundary-domain integral formulation

Let us consider a domain Ω with a position vector �r ∈ R
3. The boundary of

the domain is Γ = ∂Ω. In this work we are simulating a natural convection
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phenomena up to Ra � 106. The flow field in this case is steady, thus we may write
∂�ω/∂t = 0. The boundary-domain integral form of the steady vorticity transport
equation (16) is

c(�ξ)�ω(�ξ) +
∫
Γ

�ω�∇u� · �ndΓ =
∫
Γ

u��qdΓ

+
1

Pr

∫
Ω

u�
{
(�v · �∇)�ω − (�ω · �∇)�v

}
dΩ

+Ra

∫
Ω

u��∇× T�gdΩ − Ram

∫
Ω

u��∇× �f ′
KdΩ, (17)

where �ξ is the source or collocation point, �n is a vector normal to the boundary,
pointing out of the domain and u� is the fundamental solution for the diffusion
operator:

u� =
1

4π|�ξ − �r| . (18)

c(�ξ) is the geometric factor defined as c(�ξ) = α/4π, where α is the inner angle
with origin in �ξ. If �ξ lies inside of the domain then c(�ξ) = 1; c(�ξ) = 1/2, if �ξ
lies on a smooth boundary. Vorticity on the boundary �ω(�r) or vorticity flux on the
boundary �q(�r) = �∇�ω(�r) · �n are prescribed as boundary conditions.

All domain integrals on the right hand side of equation (17) include derivatives
of the unknown field functions. Škerget and Alujevi [12] and Škerget et al. [11]
has shown how to use algebraic relations to move the derivative from the velocity
and vorticity field functions. Body force integrals (buoyancy and Kelvin force)
are both of the same nature and can be thus handled in similar manner. Let
�f = RaT�g − Ram

�f ′
K then we need to calculate the following integral∫

Ω

u��∇× �fdΩ. (19)

The kernel of this integral is the curl of sum of the Kelvin and the buoyancy
forces multiplied by the fundamental solution. In order to avoid calculation of the
curl, we use a vector relation u��∇× �f = �∇× (u� �f) + �f × �∇u� and obtain∫

Ω

u��∇× �fdΩ =
∫
Ω

�∇× (u� �f)dΩ +
∫
Ω

�f × �∇u�dΩ. (20)

The first integral on the right hand side of (20) can be transformed into a
boundary integral by the Gauss clause, yielding∫

Ω

u��∇× �fdΩ = −
∫
Γ

u� �f × �ndΓ +
∫
Ω

�f × �∇u�dΩ. (21)

Taking into account (21) and the results of Ravnik et al. [9] the integral form of
the vorticity transport equation without derivatives of field functions, for the j-th
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component of vorticity, is

c(�ξ)ωj(�ξ) +
∫
Γ

ωj
�∇u∗ · �ndΓ =

∫
Γ

u∗qjdΓ

+
1

Pr

∫
Γ

�n · {u∗(�vωj − �ωvj)} dΓ − 1
Pr

∫
Ω

(�vωj − �ωvj) · �∇u∗dΩ

−
∫
Γ

(u� �f × �n)jdΓ +
∫
Ω

(�f × �∇u�)jdΩ. (22)

3.2 Sub-domain discretization technique

In the subdomain BEM method we make a mesh of the entire domain Ω and
name each mesh element a subdomain. Equation (22) is written for each of the
subdomains. In order to obtain a discrete version of (22) we use shape functions
to interpolate field functions and flux across the boundary and inside of the
subdomain. In this work we used hexahedral subdomains, which enable continuous
quadratic interpolation of field functions. The boundary of each hexahedron
consists of 6 boundary elements. On each boundary element we interpolate the flux
using discontinuous linear interpolation scheme. A function is interpolated over a
boundary elements as T =

∑
ϕiTi, inside each subdomain as T =

∑
ΦiTi, while

flux is interpolated over boundary elements as q =
∑

φiqi. The following integrals
must be calculated:

[H ] =
∫
Γ

ϕi
�∇u� · �ndΓ, [G] =

∫
Γ

φiu
�dΓ, (23)

[ �A] =
∫
Γ

ϕi�nu�dΓ, [ �D] =
∫
Ω

Φi
�∇u�dΩ. (24)

The square brackets denote integral matrices. Each source point location yields
one row in these matrices. In order to calculate the integrals, a Gaussian quadrature
algorithm is used. The integrals are calculated in local coordinate system via
weighted summation of up to 48 integration points per coordinate axis. Calculation
of the free coefficient c(�ξ) is preformed indirectly. If we consider a rigid body
movement, u = 1, q = 0, we see that the sum of all [H ] matrix elements for one
source point must be equal to 0, thus we may use this fact to calculate c(�ξ). The
calculated c(�ξ) are added to the diagonal terms of the [H ] matrix.

The source point is set to all function and flux nodes in each subdomain. By
letting curly brackets denote vectors of nodal values of field functions, we may
write the discrete vorticity transport equation in component form as:

[H ]{ωx} =
1

Pr
[Ay]{vyωx − ωyvx} +

1
Pr

[Az]{vzωx − ωzvx}

− 1
Pr

[Dy]{vyωx − ωyvx} − 1
Pr

[Dz]{vzωx − ωzvx}
+[G]{qx} + [Ay ]{fz} − [Az ]{fy} − [Dy]{fz} + [Dz]{fy}, (25)
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[H ]{ωy} =
1

Pr
[Ax]{vxωy − ωxvy} +

1
Pr

[Az ]{vzωy − ωzvy}

− 1
Pr

[Dx]{vxωy − ωxvy} − 1
Pr

[Dz]{vzωy − ωzvy}
+[G]{qy} + [Az ]{fx} − [Ax]{fz} + [Dx]{fz} − [Dz]{fx}, (26)

[H ]{ωz} =
1

Pr
[Ax]{vxωz − ωxvz} +

1
Pr

[Ay]{vyωz − ωyvz}

− 1
Pr

[Dx]{vxωz − ωxvz} − 1
Pr

[Dy]{vyωz − ωyvz}
+[G]{qz} + [Ax]{fy} − [Ay]{fx} − [Dx]{fy} + [Dy]{fx}. (27)

Since neighbouring subdomains share nodes, the systems of linear equations
(25), (26) and (27) are over-determined. After taking into account the boundary
conditions, we solve them using a least squares solver (Paige and Saunders [8]). All
integrals depend only on the shape of subdomains and as such may be calculated
only once, prior to the start of the nonlinear iterative process.

4 Nonlinear solution algorithm

The system of equations (15), (16) and (14) is solved in a nonlinear loop of
three steps. First, the boundary vorticity values are calculated by solving the
kinematics equation with the help of a single domain BEM. Second, the calculation
of the domain velocity values is achieved by solving the kinematics equation
with a subdomain BEM. Next the energy equation is solved by subdomain BEM
and finally, the vorticity transport equation for domain vorticity values using the
boundary values from the solution of the kinematics equation is solved by a
subdomain BEM. Solution of the vorticity equation is described above, details
of the solution of the other equations are given by Ravnik et al. [10].

5 Numerical tests

We have simulated a ferrofluid with the following representative properties:
χ0 = 0.1, β = 5.6 · 10−4K−1, ρ = 1180kg/m3, ν = 5.93 · 10−6m2/s,α =
1.19 · 10−7m/s2 and Pr = 49.8 [3, 6]. We consider the ferrofluid to be enclosed
in a cubical (L × L × L) enclosure and subjected to a temperature gradient
on two vertical walls. All other wall are adiabatic. No-slip velocity boundary
conditions are applied on all walls. The problem setup is shown in Figure 1. In
such differentially heated enclosure fluid due to buoyancy forces flows up the
hot wall and down the cold wall creating a vortex in the enclosure and leading
to temperature stratification within the enclosure. In this work we investigate the
behaviour of a ferrofluid in such an enclosure subjected to external magnetic fields.

We consider the enclosure placed in a homogenous external magnetic field. The
magnetic field is aligned with the enclosure walls and has the direction form the hot
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hot wall

adiabatic walls

�g

cold wall

lines for profile export
adiabatic walls

�H

L

Figure 1: Problem setup and boundary conditions. No-slip velocity boundary
conditions are applied on all walls.

to the cold wall. We consider flow of Rayleigh number for Ra = 104 to Ra = 106

and magnetic Rayleigh number values from Ra = 104 to Ra = 106.

5.1 Results

Figure 2 shows the temperature contours at Ra = 104 within the enclosure for
various magnetic fields. We observe that the overall structure of the flow and
temperature fields remain the same regardless of the magnetic field. Temperature
stratification in the centre of the enclosure is evident in all cases as well as the
existence of the primary vortex.

In order to capture the effect of the magnetic field flow and temperature field
was investigated on two profiles, which run through the centre of the enclosure.
The location of the profiles is shown in Figure 1. Figures 3–8 show temperature,
x velocity component and y vorticity component on both profiles for all simulated
cases.
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Figure 2: Temperature contours in the enclosure, Ra = 104. No magnetic field
(left), homogenous external magnetic field �H = (H0, 0, 0) yielding
Ram = 104 (center) and Ram = 105 (right).
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Figure 3: Temperature (left), velocity (centre) and vorticity (right) profiles through
the centre of enclosure at y = 0.5 and z = 0.5 for Ra = 104.
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Figure 4: Temperature (left), velocity (centre) and vorticity (right) profiles through
the centre of enclosure at y = 0.5 and z = 0.5 for Ra = 105.
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Figure 5: Temperature (left), velocity (centre) and vorticity (right) profiles through
the centre of enclosure at y = 0.5 and z = 0.5 for Ra = 106.

We can conclude that the largest differences in the flow field are evident in the
velocity field. The temperature field is less affected by the magnetic field. For
magnetic Rayleigh numbers less or equal to the flow Rayleigh number (Ram ≤
Ra) the effects of the magnetic field on the flow field are small, almost negligible.
However, for Ram > Ra the effects become noticeable. The increase of the
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Figure 6: Temperature (left), velocity (centre) and vorticity (right) profiles through
the centre of enclosure at x = 0.5 and y = 0.5 for Ra = 104.
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Figure 7: Temperature (left), velocity (centre) and vorticity (right) profiles through
the centre of enclosure at x = 0.5 and y = 0.5 for Ra = 105.
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Figure 8: Temperature (left), velocity (centre) and vorticity (right) profiles through
the centre of enclosure at x = 0.5 and y = 0.5 for Ra = 106.

magnetic Rayleigh number causes additional body force and contributes to the
generation of instabilities in the flow. In the case of Ra = 105 and Ram = 106

the flow was found to be unsteady. The largest effect caused by the magnetic field
can be seen in the vx(x) profile. This is due to the fact, that the velocities in the
(x, y, 0.5) plane are very small. In the vx(z) profile the velocities are larger and
the relative difference between simulations with and without the magnetic field
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smaller. Looking at T (x) profiles, we observe that the magnetic field causes a
drop in temperature of the ferrofluid close to the cold wall and a rise close to the
hot wall.

6 Conclusions

The BEM was applied to viscous flow of ferrofluids in a natural convection
problem under the influence of a homogenous external magnetic field. We derived
the boundary integral form of the vorticity transport equation, which includes a
body force terms, due to the properties of ferrofluids and the external magnetic
field.

Through the use of vector algebra and Gauss clause the calculation of derivatives
of the body force term has been avoided. Thus the body force term yields a
boundary integral term with the fundamental solution as the kernel and a domain
integral term, where the gradient of the fundamental solution is the kernel.

The derived numerical model has been used to study the effect of a homogenous
external magnetic field on the natural convection of ferrofluids. We established that
the effects are negligible for magnetic Rayleigh numbers less or equal to the flow
Rayleigh number (Ram ≤ Ra). On the other hand, for Ram > Ra the magnetic
body force changes the flow field significantly and contributes to the instability of
the flow.
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