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Abstract 

The method for dynamic analysis of shell structures partially filled with liquid is 
presented in this paper. The method relies on determining the fluid pressure from 
the system of singular integral equations. The axisymmetric compound shell of 
revolution is chosen as the model of capacity for liquid storage. The shell is 
considered to be a thin one, and Kirghoff–Lave linear theory hypotheses are 
applied. The liquid is ideal and incompressible. The coupled problem is solved 
using a combination of reduced BEM and FEM. Differential equations of the 
transient problem are solved numerically by the Runge-Kutta method of 4th and 
5th order. Numerical simulation of free and forced vibrations of the elastic and 
rigid shells filled with the incompressible fluid under different loadings has been 
carried out. 
Keywords: fluid-structure interaction, free and forced vibrations, boundary and 
finite element methods. 

1 Introduction 

Different engineering areas such as aerospace and chemical industry, power 
machine building, wind power engineering and transport extensively use thin-
wall structural elements operated under excess process loads. Usually they are 
also filled with oil, flammable or toxic liquids. Such facilities are fuel tanks, 
liquid storage tanks, oil and propellant storage containers. Destruction of these 
tanks by seismic action or shockwaves from a nearby explosion can lead to 
environmental catastrophe. Complex experimental investigation of loading 
processes is difficult and sometimes impossible for various reasons. Hence 
mathematical modeling of physical processes with the help of advanced 
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computer engineering is a basic approach for these problems. Currently it has 
also been recognized that several containers and storages with toxic or 
flammable substances are located in areas formerly considered as seismically 
safe, and therefore they have been designed ignoring possible horizontal loads 
according to obsolete seismic standards. The information from Donetsk [1] 
specifies: strata shearing will occur not only as the result of earthquakes and 
explosions, but also due to soil falls in coal mines. There are a lot of coal mines 
in Donbass that are not operated since 1920s. Maps of these mines were lost 
during revolutions and wars. Note that in Donbass there is a lot of oil storages 
located near such mines. The impacts due to soil falls can be also modeled as 
horizontal seismic loads. It should be noted that not only estimation of operating 
equipment, but also reliability-focused design of new high-performance 
machines and structures requires defining the strength characteristics of their 
elements. These data allow evaluating the ultimate strength of a structure under 
shock or seismic action, isolate spurious resonance frequencies, and identify the 
most hazardous zones at the design stage. A distinguishing feature of these 
structures is that they operate interacting with the air or water environment. 
Owing to this, to define the strength characteristics it is necessary to solve 
problems of hydro–elasticity, i.e. to find stress and strain fields and vibration 
frequencies considering fluid or gas pressure forces acting on the elastic body. 
Numerical methods are especially useful when the geometry of container is 
complicated and the sloshing in the container cannot be analytically investigated. 
Various approaches have been proposed to research fluid-structure interaction, 
including the finite difference methods [2], the finite element methods [3], the 
boundary element methods [4–8]. The research findings are summarized in [9].  
     In this paper the coupled problem of free and forced vibrations of shell 
structures interacting with the fluid is under consideration. For its solution we 
use combination of reduced finite and boundary element methods. The analysis 
consists of several stages, each represents a separate task. The frequencies and 
modes of shell vibrations in a vacuum are defined by the first stage. 
Displacement vector, that is the solution of the hydrodynamic problem, is sought 
as a linear combination of the natural modes of shell vibrations in vacuum. So at 
the second stage we define the frequencies and free vibrations modes of elastic 
shell without including the force of gravity. Thirdly, we obtain the frequencies 
and free vibrations modes of liquid in rigid shell under force of gravity. The 
latter two problems are solved using reduced BEM. Then we come to second 
order system of differential equations for forced vibrations of the shell partially 
filled with liquid and solve it numerically using Runge-Kutta method. 

2 Problem statement 

Let us consider the coupled problem for shells interacting with the liquid. In this 
study the contained liquid is assumed to be inviscid and incompressible.  
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Governing equations of motion for the liquid-structure system subjected to 
disturbing force are given by  
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 (1)  

Here , ,u v w  are the displacement components;  k
ijL  (і,ј=1,2,3) are differential 

operators; Q = (Q1, Q2, Q3) is the vector of disturbing force;  is the material 
density; h is the shell thickness, Pl is hydrodynamic pressure.  
     Let , ,x y zv v v  be the components of fluid velocity, then the incompressibility 

condition can be written as follows: 
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     Suppose that disturbing force Q is the sum of vertical gravitational and 
seismic horizontal forces. Then the fluid displacement vector can be expressed in 
the form 
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(3) 

Here l is the liquid density,  sa t  and g  are seismic and gravitational 

accelerations. So the liquid pressure could be expressed as the sum of dynamical 
and static pressures  
  xtagzpP slll  .  

Suppose that flow is the potential 
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Due to (2) the velocity potential   satisfies the Laplace equation 
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     The hydrodynamic pressure, according to the Cauchy-Lagrange integral, can 
be represented as follows 
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where z is vertical coordinate of a point in liquid. 
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     We denote a moistened surface of a shell through S1 and a free surface as S0. 
Let refer the Cartesian coordinate system 0xyz connected with a shell (Figure 1). 
The free surface of the liquid S0 coincides with the plane x0y in unperturbed 
state. Let liquid storage tank is subjected to a dynamic load. To obtain the 
boundary equations on the free surface we have formulated dynamic and 
kinematics boundary conditions. The dynamic boundary condition consists in 
equality of the liquid pressure on the free surface to atmospheric one. The 
kinematics boundary condition requires that liquid particles of the free surface 
remain on it for all subsequent motion. 
 

   

Figure 1: Shells of revolution partially filled with liquid. 

     So we obtain the following boundary value problem for defining the unknown 
functions U and . 
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where L, M are matrix operators corresponding to  k
ijL  and inertial components. 

We will seek the natural modes of shell vibration in the fluid as follows  

      
1

, , , , ,
m

k k
k

U x y z t c t u x y z
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where functions ( , , )ku x y z are modes of natural vibrations in vacuum, 

( )kc t are unknown factors. 

     We will seek function  as a sum of two potentials 1 2     . Potential 1 
corresponds to the problem of vibrations of elastic shell with weightless fluid 
( 0g ). To determine 1 we obtain the following boundary value problem: 
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Here      
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modes of natural vibrations of the shell in vacuum. From equations (3) and 
second one from (6) it follows that 
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     To determine 1k  we have the next set of boundary value problems: 
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     To determine 2 we have to solve the problem of fluid vibrations in rigid 
vessel including gravitational force  
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     The last equation in (9) follows from equation (3) and represents dynamic 
condition on the free surface. Differentiating this equation with respect to t we 
come to the following equation for velocity potential in the rigid vessel: 
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     Let us seek for the solution of this problem in the next form:  
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     For function  we have the following problem of free harmonic fluid 
vibrations: 
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     Solving this problem one can obtain the number of eigenvalues k and 
corresponding eigenfunctions 2k. After equation (11) is solved we are looking 
for function 2  in the form 
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     From (9) and (12) we have  
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     We have 1 0   from relation (8). Then equality   0sg a t x      leads 

to the system of differential equations 
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     Due to orthogonality of natural modes of fluid vibrations in rigid vessel we 
have after dot product of (14) by functions 2l 
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     When functions 1k and 2k are obtained, we substitute them in equation (2) 
and obtain the following equation: 
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     Let k, uk be natural frequencies and free vibrations modes of the shell in 
vacuum. Then the following relationships are valid 
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     Considering the result of dot product of equation (13) by uj and taking into 
account equations (14), we come to the next set of n+m second order differential 
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     So, the scheme of the solution for considered problem consists of following 
steps. First, we have to obtain the natural frequencies and mode shapes of the 
free vibrations of elastic shell in vacuum. The problem is solved using FEM. 
Second, it is necessary to obtain the frequencies and free vibration modes of 
liquid in rigid shell under force of gravity. Then we define the frequencies and 
free vibration modes of elastic shell without including the force of gravity. These 
two problems are solved using BEM. And at the end we solve the set of second 
order differential equations using 4th and 5th order Runge-Kutta method. 
     We use furthermore the cylindrical coordinate system and represent unknown 
functions as Fourier series by circumferential coordinate 

  , cosw w r z  ,  , cosr z    . (16) 

     To solve the coupled hydro-elasticity problem it is necessary to determine the 
potentials 1 and 2. These problems were reduced to the solution of the systems 
of singular integral equations. Determination of the potential 1 was 
accomplished as in [6, 7].  
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     Here kernels  0,z z and  0,P P  are defined as 
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     For numerical solution of singular integral equation systems the boundary 
element method with constant approximation of unknown density on elements 
was used [5]. Integration by the fluid volume is reduced to integrals along the 
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shell meridian and along the radius of the liquid free surface. It is the basic 
advantage of our method based on the combination of boundary integral 
equations method, FEM, BEM and expansion into Fourier series. It would be 
noted that the only FEM analysis requires 3D modeling to solve this coupled 
problem. That leads to essentially more computer timetable and it does not allow 
using effectively such methods in computer monitoring problems.  

3 Some numerical results 

We consider a semi-spherical shell filled with a fluid and having the following 
parameters: the shell radius is 5.08 mR  , the thickness h  0.0254 m, the 
modulus of elasticity 70E   GPa, Poisson’s ratio 0.3,v   the material’s density 

is =2770 kg/m3. The liquid is incompressible and its density is =1000 kg/m3. 
The shell is assumed to be pin-connected over its contour (Figure 2a)).  
 

   
a) b) c) 

Figure 2: Drafts of shells partially filled with the liquid. 

     The calculations of the natural vibrations of the sphere in vacuum and in 
liquid were carried out. Table 1 provides the numerical values of the natural 
frequencies of vibration for various numbers of nodal diameters  . 

Table 1:  Comparison of frequencies for hemisphere with liquid. 

 m Natural frequencies, Hz 
 

In vacuum 
With fluid 

BEM [10] 
 

0 
 

1 117.19 22.31 22.00 
2 146.17 33.63 33.38 
3 152.66 41.66 42.02 

 
1 
 

1 87.938 22.28 22.44 
2 138.91 34.89 36.88 
3 150.34 43.21 48.92 

 
2 
 

1 141.54 31.56 31.57 
2 151.37 40.61 41.55 
3 154.94 47.56 50.29 
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     The obtained numerical results are compared with those reported by 
Mokeev [10] for a compressible fluid. 
     The mode shapes of the shell meridian for  = 0 and various m  are shown in 
Figure 3. Here the solid line denotes the shell meridian, a long dotted line 
denotes the mode shapes in vacuum, and a short dotted line denotes the mode 
shapes in the fluid. 
 

     

Figure 3: The mode shapes of vibration in vacuum and with fluid: α=0, 
m=2,3. 

     The problems on liquid free vibrations in rigid shells including gravity were 
under consideration. As an example we put the numerical results for the conical 
shell (Figure 2b)). The analytical values of free vibration frequencies are defined 
by following formulas [11] 

 )( 00
2 Hth

R

g
 ,   

 
   yx
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zch
zyx ,),,(
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
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 , (19) 

where 1111 /,/,/,/ RHHRzzRyyRxx  ; R1  is the radius of free 

surface, R2  =0; H is the filling level in the tank, 0 are roots of equation 

  0I   ;  I r  are Bessel functions of the first kind.  

     At numerical simulation we use the net of n boundary elements on the shell 
meridian and m boundary elements on the free fluid surface. Table 2 represents 

the numerical values of two first own values gR /2 for  = 0 and  = 1 at 

different n and m. Here are also the analytical values obtained by formula (19).  

Table 2:  Convergence of own values in dependence of the net. 

n+m =0 =1 
1 2 1 2 

10+10 3.54 6.93 1.39 5.15 
20+20 3.50 6.78 1.38 5.05 
30+30 3.48 6.74 1.37 5.02 
40+40 3.47 6.71 1.37 5.01 

Solution [12] 3.46 6.70 1.36 4.97 
 

Boundary Elements and Other Mesh Reduction Methods XXXIV  91

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Modelling and Simulation, Vol 53, © 201  WIT Press2



     Figure 4 demonstrates the own modes corresponded to the two lowest 
frequency parameters of liquid vibrations on free surface. The numerical data 
testify that proper accuracy of calculating a frequency (1.6%) is achieved at the 
net of 20+20 boundary elements. 
 

 

Figure 4: First and second vibration modes of conical shell at =0 and =1. 

     The forced vibration problem for above-mentioned hemisphere (Figure 2a)) 
was investigated. The impulse load Q(r,,z,t)=P(r,,z)(t), P=const was 
considered in the following form 

  








1

1

,0

,1

Tt

Tt
t  (20) 

where T1 = 0.002 s. Figure 5 shows the time history of axial displacement. In 
papers [6–7] the coincidence of results obtained by proposed method and 
program complex ANSYS was demonstrated. 
 

   

Figure 5: Time history of axial displacement. 

     The shell scheme and time history of radial displacement at different points 
are shown at Figure 6. 
     The rigid cylindrical shell (Figure 3c)) was considered under seismic loading. 
Figure 7 shows the accelerogram of El-Centro earthquake [12] in USA, 1940 
(magnitude 9 on the Richter scale) and the position of free surface at the initial 
time. The parameters of shell were following: the radius R = 1m, the thickness 
h=0.01m, the length L=2m, Young’s modulus E=2·105 MPa, Poisson’s ratio 
ν=0.3, the material’s density ρ=7800 kg/m3, the fluid density ρl=1000 kg/m3. The 
filling level of the fluid is denoted as H. Boundary conditions are following: 
ur=uz=uθ=0 to z=0 and r=R. Here we assume H = L. 
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Figure 6: Shell scheme and time-history of radial displacement. 

   

Figure 7: Accelerogram of El-Centro earthquake and free surface at the 
initial time. 

     Figure 8 demonstrates free surface of liquid in cylindrical tank at different 
times that was calculated using system (18) for the accelerogram  tas  

presented in Figure 7. 
 

     

Figure 8: Free surface of liquid at different times. 
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4 Conclusions 

The numerical procedure based on a coupling finite and boundary element 
methods and expansion into Fourier series is developed for free and forced 
vibration analysis including seismic loading for shells of revolution with an 
arbitrary meridian. The shells considered were partially filled with the inviscid 
incompressible fluid. We introduce the representation of the velocity potential as 
the sum of two potentials, corresponding to the problems of fluid and shell free 
vibrations. The fluid vibrations were considered in the rigid shell and the shell 
vibrations were studied for weightless contained fluid. Both problems were 
solved using reduced BEM. Integration by the fluid volume was reduced to 
integrals along the shell meridian and along the radius of the liquid free surface. 
It is the basic advantage of our method. The governing integral equations for 
each harmonic have been obtained. The numerical simulation of free and forced 
vibrations for elastic and rigid shells was accomplished.  
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