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Abstract 

Fractional advection-dispersion equations are used in groundwater hydrology to 
model the transport of passive tracers carried by fluid flow in a porous medium. 
In this paper, the numerical properties of partial differential equations of 
fractional order 21   are investigated by the use of a radial basis function 
interpolation scheme.  The differential equations of fractional order are first 
analyzed in the Laplace transformed domain and the Durbin inversion method is 
then used to determine the solutions in the time domain. The accuracy and 
stability of these methods are investigated for several standard types of problems 
involving partial differential equations of fractional order. 
Keywords: fractional derivatives, partial differential equations, radial basis 
function, Laplace transform, Durbin algorithm. 

1 Introduction 

Analysis of the diffusion-wave equation in mathematical physics has been of 
considerable interest in the literature. Ordinary and partial differential equations 
of fractional order have been the focus of many studies because of their frequent 
appearance in various applications in fluid mechanics, viscoelasticity, biology, 
physics, and engineering. Fractional calculus in mathematics is a natural 
extension of integer-order calculus and gives a useful mathematical tool for 
modeling many processes in nature. One of these processes, in which fractional 
derivatives have been successfully applied, is called diffusion [1]. Fractional 
derivatives have recently been applied to many problems in physics [2–8], 
finance [9, 10], and hydrology [11]. Fractional space derivatives are used to 
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model anomalous diffusion or dispersion, where a particle plume spreads at a 
rate inconsistent with the classical Brownian motion model. When a fractional 
derivative replaces the second derivative in a diffusion or dispersion model, it 
leads to enhanced diffusion (also called super diffusion). For one dimensional 
advection–dispersion model with constant coefficients, analytical solutions are 
available using Fourier transform methods [12, 13].  Many practical problems, 
however, are formulated with variable coefficients [14] whose analytical 
solutions are still not available. 
     In the last decade, the radial basis functions (RBFs) have been under intensive 
research in the areas of multivariate function interpolation and partial differential 
equations solver [15, 16]. In this paper we propose a numerical scheme by the 
use of RBFs for solving the ordinary and partial differential equations of 
fractional order as follow: 
     Consider a simple form for transport equations 
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where the coefficients ( )A x , ( )B x  and the source team ( , )f x t  are given. In (1), 

D  denotes a fractional derivative operator defined as 
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where  0   and m is an integer such that 1m m   . The boundary 
conditions and initial conditions are given respectively by 
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     For simplicity, we only consider fractional derivatives in space and the index 
 is assumed to lie within the range 1 2   and therefore 2.m   By applying 
the Laplace transformation on equations (1) and (3, 4) with consideration of 
initial condition, we obtain 
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with the boundary condition 
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     We note here that although there are several numerical methods developed to 
solve differential equations of fractional order, there is little information on the 
numerical solution of partial differential equations of fractional order.   
     This paper is organized as follows. In Section 2, radial basis function 
interpolation scheme is introduced.  The numerical schemes for the solutions of 
(1) are then derived in Section 3. In Section 4 several numerical tests and 
solutions of the transport equilibrium equation are given for the verification of 
the accuracy and efficiency of the proposed numerical schemes. Finally, 
conclusion is given in Section 5. 

2 Approximation scheme using radial basis functions 

RBFs have been initially used for scattered data fitting and general multi-
dimensional data interpolation problems, see Ref. [15], and were later applied by 
Kansa [17, 18] for the numerical approximations of various types PDEs. For one 
dimensional problem, this interpolation becomes very simple. In order to 
guarantee unique solution of the interpolation problem, a polynomial term should 
be added to the interpolation. Thus, the interpolated distribution of function u at 
the point x can be expressed by 
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along with the constraints 
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where the vector  1 1 2 2R( ) ( ), ( , ),..., ( , )n nx R x,x R x x R x x  is the set of radial 

basis functions at point x,  1 2P( ) ( ), ( ),..., ( )qx P x P x P x  is the set of polynomial 

functions,  1

n

kx  is the set of distributed collocation points in the range 0 1,x 
1j

jP x  . Two unknown vectors  1 2a , ,...,
T

na a a  and  1 2b , ,...,
T

tb b b  are to 

be determined by nodal values respectively. A set of linear equations to 
determine the coefficients a and b can be written, in matrix form, as 
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with nodal values  1 2u , ,...,
T

nu u u  at collocation points   1

n
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x
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     Solving these equations given in (9) gives 
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where I denotes the diagonal unit matrix. In this paper, the radial basis function 
is selected to be the infinitely smooth multiquadrics: 

 

22 )()( kkk xxcx,xR   (12) 

where c is a free parameter. Finally the approximated variable can be presented 
as 
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where ( )kN x  is called shape function.  From the expression (13), it can be seen 

that the partial derivatives of the unknown function can be obtained by simply 
evaluating the partial derivatives of the shape functions. From (13), we have 

  uNuBPAR  )()(' ,,, xxuu xxx  and 

  uNuBPAR  )()('' ,,, xxuu xxxxxx  (14) 

where 
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     For second order derivative of the shape function, we have 
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3 Numerical scheme of fractional derivatives 

The space variable x is defined to be the unit length interval in (5). By simple 
integration by part, the fractional derivative can be written as 
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     Therefore, the differential equation with fractional order (5) becomes 
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     It is worthy to notice that there are singularities in (18) at origin if 1 2.   
It may cause troubles for numerical calculation. Normally the boundary 
condition ,(0) (0) 0xu u    is assumed [19]. Substituting (13) (14) into (18) 

results 
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or 
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     In this paper, we set up a grid of points, ( 1) / ,  k 1,2,...,kx k N n   , n=N+1. 

For each collocation point except the end points 1x  and 1Nx , we have 
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for 2,3,...,k N ,  with the boundary conditions 
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     Thus, we have obtained a complete system of algebraic equations for the 
computation of (N+1) nodal unknowns u  in the Laplace transform domain. As 
there is weak singularity in the integral of (10), we can transfer the integral into a 
regular integral as 
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whose integration can be performed by any standard integral scheme. 
     There are many inversion methods available for numerical computing the 
inverse Laplace transform. Here, the method proposed by Durbin [20] is 
adopted. A series of samples (L+1) in the transformation space ,lp

0,1,2,..., ,l L  are selected as complex variable. Transformed variables are 
evaluated for these specified transform parameters respectively. The physical 
variables in the time domain can then be determined by the Laplace inversion 
technique. Demonstration of the Durbin’s inverse method was made by Wen et 
al [21, 22] for the elasticity wave propagations for two and three dimensional 
problems. The formula of inversion used is written as 
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where ( )lF p denotes the transformed variable in the Laplace domain and 

1i   . The parameter of the Laplace transform is taken to be 
2 /ls l i T   . The selection of two free parameters   and T has small 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

338  Boundary Elements and Other Mesh Reduction Methods XXXIII



effect on the accuracy of inversion. By large number of numerical tests, we can 
conclude that Durbin inversion method is stable and convergent for large range 
selection of free parameters   and T particularly for the solid dynamic 
mechanics. 

4 Numerical verification 

In the following test cases, we assume that1 2, 2m   . For numerical error 
estimation, we define the relative average error by the following formula 
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where M  is the number of time observations at collocation point x and *u
denotes the analytical solutions at time it  in the region max[0, ]t . The free 

parameters is chosen to be 5 / T   and T =20. To test the numerical schemes, it 
is important to use simple analytical models.  Hence, in the first example we 
consider the case of evolution of a density profile to an equilibrium solution [19]. 
The equilibrium density profile is the solution of the equation, 
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     In order to have a simple solution, we use a simple form for the source 

function 
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     Along with the boundary condition (0) 0,   '(0) 0.u u   In this case, the 

analytical solution for any value of 1   is given by 
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     Numerical results are listed in Table 1 when fractional order 1.5  . It is 
apparent that the accuracy depends on the selection of free parameter c. For 
small c, we are able to obtain high accurate results even with small number of 
collocation points. However, the accuracy does not increase with the increasing 
of collocation number. In addition, the divergence of solution will occur when 

10 /c n  and 31n   even when double precision of variable is used.  This fact 
is well known in the use of radial basis functions for multivariate interpolation 
and PDE solver.  Therefore, in the following tests, parameter c is chosen to be  
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Table 1:  Relative error in (23) for the first example  

 
2/)3()1(/1*

max  u .  

c 11n  21n  31n  n = 41 

n/1.0  9.0454×10-4 4.0698×10-4 2.6690×10-4 1.9813x10-4 

8 6.9659×10-4 2.4753×10-4 1.3557×10-4 8.7012x10-5 

n/10  1.9478×10-4 1.2055×10-4 4.8050×10-1 5.8850x10-1 

 

1 /c n . In the second example, we consider the following differential equation 
with non-zero boundary condition at origin 
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along with the boundary condition 0)0( u , 1)1( u  and source term 
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     The analytical solution is 2( )u x x . Numerical results are presented in 

Table 2 for different fractional order  . 

Table 2:  Relative error for the second example, *
max 1.u   

 5n  11n  21n  

1.001 9.7484×10-8 2.3098×10-8 8.7972×10-8 

1.1 1.8599×10-8 2.1025×10-8 1.7394×10-8 

1.5 6.5070×10-9 1.2149×10-8 3.4291×10-9 

1.9 2.2595×10-8 2.4772×10-8 9.4626×10-7 

1.999 1.6621×10-7 2.2757×10-6 3.4531×10-7 

 

     For different fractional order, same order of accuracy can be achieved even 
with different number of collocation points. Apparently this numerical scheme is 
of high accuracy and convergent to solve partial differential equation of 
fractional order.  In the final example, we consider the following differential 
equation of fractional order with time dependence as 
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     The analytical solution is determined by *( , ) tu x t x te  . The numerical 

solutions by using the proposed scheme are plotted in Figure 1 for 0 5t  . In 
this case fractional order is fixed to be 1.5  . Two curves are plotted which 
correspond to the numbers of collocation point 21  and  41n   respectively.  
 

 
Figure 1: Variation of (1, )u t  against time t. 

5 Conclusion 

In this paper we consider a partial differential equation of fractional order   
with variable coefficient and propose a new numerical scheme using radial basis 
function interpolation. For zero boundary conditions, (0, ) '(0, ) 0,u t u t  the 

singularities are vanished in the differential equation and accurate numerical 
solutions can be obtained. Although this is not required, for simplicity, all 
collocation points are chosen to be uniformly distributed in the range 0 1.x   
The Laplace transform technique with Durbin inversion method for time variable 
is applied for solving the time dependent problems. Compared with analytical 
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solutions, excellent agreement with the proposed numerical scheme is obtained. 
We can conclude with following observations: (1) The radial basis function 
interpolation is suitable to solve partial differential equation of fractional order; 
(2) The time dependent problem can be dealt with in the Laplace transform 
domain; (3) Numerical solutions are not sensitive with the selections of 
collocation point number n; (4) Nonlinear problems will be investigated in 
separate paper.   
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