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Abstract

The objective of this paper is to represent an alternative approach to conventional
numerical methods for solving heat transfer and charring behaviour of timber when
exposed to fire. The model consists of differential equations for heat transfer with
the corresponding boundary conditions. The char formation in the wood beam as
a function of its temperature is also taken into account by the model. Picard’s
or Newton’s methods are used for solving the second-order non-linear partial
differential equations. In recent years, the RBF methods have emerged as novel
computing methods in the scientific computing community. Traditionally, the most
popular methods have been the finite element methods (FEM), the finite difference
methods (FDM), and boundary element method (BEM). The results are tested on
the one-dimensional case in standard fire conditions, for which the comparison is
made with the results of one-dimensional charring rate models for wood. The same
model is used to analyze a two-dimensional behaviour of a timber beam exposed
to fire from three sides.
Keywords: heat transfer, charring behaviour of timber, pseudospectral mode,
multiquadric, partial differential equations, Picard’s method, radiation, pyrolysis,
combustion.
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1 Introduction

When wood is exposed to fire it undergoes thermal degradation. Thermal
degradation or pyrolysis reduces the density by changing the wood to char
and gases. The pyrolysis gases undergo flaming combustion as they leave the
charred wood surface. The pyrolysis, charring, and combustion of wood have been
extensively studied in [1].

The governing equations present differential equations for heat transfer with the
corresponding boundary conditions. The boundary conditions prescribe the heat
flow on the exposed boundaries of cross-section. In our case, different types of
boundary conditions were used. The char formation in the wood beam as a function
of its temperature is also taken into account by the model. The problem is solved
numerically by the radial base function (RBF) methods.

Recent research on the numerical method has focused on the idea of using a
meshless methodology for the numerical solution of PDEs. One of the common
characteristics of all mesh-free methods is their ability to construct functional
approximation or interpolation entirely from information at a set of scattered
nodes, among which no relationship or connectivity is needed. In this paper, two
methods will be used, Kansa’s approach [2] and pseudospectral (PS) method [3,4].
The goal of this paper is to represent an alternative approach to conventional
numerical methods for solving heat transfer and charring behaviour of timber when
exposed to fire.

The results are tested on the one dimensional case in standard fire conditions,
for which the comparison is made with the results of one-dimensional charring rate
models for wood presented in the literature published by White and Nordheim [5].
The same model is used to analyse a two-dimensional behaviour of wood beam
exposed to fire from three sides. The results are compared with the results obtained
in literature [6]. Faster charring at the corners and typical rounding effect are
observed.

2 Governing equations

In general, the heat and mass transfer is governed by the two second order
non-linear partial differential equations [7]. In our case, only equation which
describes heat conduction governed predominantly by temperature gradients was
considered. The equation can be written as:

�cp
∂T

∂t
= kx

∂2T

∂x2
+ ky

∂2T

∂y2
, (1)

where kx and ky represent thermal conductivity (W/mK) in directions x and y of
a cross-section of the beam, � is density (kg/m3), cp specific heat (J/kgK) and T
temperature (◦C). The second equation describes moisture diffusion governed by
moisture potential and is not considered here.

The problem is complete when initial and boundary conditions are specified.
The initial condition prescribes the temperature in the cross-section of the beam at
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the initial time t = 0

T (x, y, 0) = T0(x, y). (2)

The boundary conditions prescribe the heat flow on the exposed boundaries of
cross-section. Thus, the boundary conditions at the exposed surface are given by
balancing heat conduction at the surface with the radiative and convective heat
flux. The boundary conditions can be written as:

−kx
∂T

∂x
enx − ky

∂T

∂y
eny = hc(T − TA) + εRσ(T 4 − T 4R), (3)

where enx and eny are components of the normal to the boundary surface and
hc is convective heat transfer coefficient (W/m2K). TA is the temperature of
the ambient. TR is the temperature of the radiating surface, εR is the effective
surface emissivity of the exterior siding and σ is the Stephan–Boltzmann constant
for radiation, (σ = 5.671.10−8W/m2K4).

3 Solving the heat conduction equation

For the solution of eqn. (1) with the corresponding initial and boundary conditions
non-symmetric RBF and PS method are used. A computer program is written in
MATLAB environment.

3.1 Kansa’s approach

A very popular non-symmetric method for the solution of PDEs with RBFs
was suggested by Kansa [2]. A radial basis function is the function ϕj(x) :=
ϕ(‖x − xj‖), which depends only on the distance between x ∈ R

d and a fixed
point xj ∈ R

d. Here, ϕj is continuous and bounded on any bounded sub-domain
Ω ⊆ R

d whereas ϕ : R
d → R. Let r ≥ 0 denote the Euclidean distance between

any pair of points in the domain Ω. The commonly used radial basis functions
are linear (ϕ(r) = r), cubic (ϕ(r) = r3), thin-plate spline (ϕ(r) = r2 log r)
and Gaussian (ϕ(r) = e−αr2

). The most popular globally supported C∞ RBFs
are multiquadric functions (MQ) (ϕ(r) = (1 + (r/c)2)β), β = 1/2 [8]. MQ
has been already efficiently used in transport problems [9], moving-boundary
problems [10], etc.

The starting point of the RBFs solution of partial differential equations is the
interpolation problem. The MQ RBFs is used to interpolate the scalar level set
function by using MQ basis centered at these RBF centers, Ξ = {ξ1, . . . , ξN}.
The goal is to find an interpolant of the form

Φ(x) =
N∑

j=1

αjϕ(‖x − ξj‖), such that Φ(xi) = fi, i = 1, . . . , N, (4)

where αj is the weight of the radial basis function positioned at the j-th
center. Knowing that the initial data values f1, . . . , fN ∈ R at the data points
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x = {x1, . . . , xN} ⊂ Ω ⊂ R
N , the solution of this problem leads to a linear

system Aα = f with the entries of A given by

Aij = ϕ(‖xi − ξj‖), i, j = 1, . . . , N. (5)

We now switch to the collocation solution of partial differential equations. We
consider a PDE in the general form of

Lu(x) = f(x), in Ω ⊂ R
d , (6)

Bu(x) = g(x), on ∂Ω, (7)

where u is the unknown solution, d denotes the dimension, ∂Ω is the boundary of
the domain Ω, L is the differential operator on the interior, and B is the operator
that specifies the boundary conditions of the Dirichlet, Neumann or mixed type.
f(x) and g(x) are given functions with sufficient smoothness mapping R

d �→ R,
respectively.

The unknown PDE solution u is approximated by RBFs in the form:

u ≈ U(x) =
N∑

j=1

αjϕ(‖x − ξj‖). (8)

The collocation matrix that arises when matching the eqn. (6) and eqn. (7) at the
collocation points Ξ will be of the form

A =

[
ÃL

Ã

]
, (9)

where the two blocks are generated as follows:

(ÃL)ij = Lϕ(‖x − ξj‖)|x=xi , xi ∈ I, ξj ∈ Ξ, (10)

Ãij = Bϕ(‖x − ξj‖), xi ∈ B, ξj ∈ Ξ. (11)

The set of collocation points Ξ is split into a set of interior points I and a set of
boundary points B. The problem is well-posed if the linear system Aα = b, with
b as a vector consisting of entries f(xi), xi ∈ I, followed by g(xi), xi ∈ B, has a
unique solution.

3.2 RBF-based pseudospectral method

The following review of non-symmetric RBF-based PS method is adapted from
standard textbooks on Meshfree Approximation Methods with MATLAB [11].
An important feature of pseudospectral methods is the fact that one usually is
content with obtaining an approximation to the solution on discrete set of grid
points xi, i = 1, . . . , N . One way to implement the spectral method is via so-called
differentiation matrices D. These can be found so that the following equation holds
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at the collocation points

u′ = Du, (12)

where u = [û(x1), . . . , û(xN )] is the vector of values of the approximation
solution û at the collocation points. Usually, orthogonal polynomials such as
Chebyshev polynomials are used as basis functions Bj(x). In our case, we used
MQ RBF.

The approximate solution is expressed as:

û(x) =
N∑

j=1

βjBj(x), x ∈ R, (13)

If we evaluate (13) at the collocation points xi, i = 1, . . . , N , we get

û(xi) =
N∑

j=1

βjBj(xi), i = 1, . . . , N, (14)

or in matrix-vector notation

u = Aβ, (15)

where Aij = Bj(xi).
We can do the same in the case of derivative of û:

d

dx
û(x) =

N∑
j=1

βj
d

dx
Bj(x). (16)

If we evaluate again at the collocation points xi, then we get in matrix-vector
notation

u′ = Axβ, (17)

We can use (15) to formally solve for the coefficient vector β = A−1u and
rewrite eqn. (17) as

u′ = AxA−1u, (18)

so that the differentiation matrices D corresponding to (12) is given by

D = AxA−1, (19)

For more complex linear differential operators L with constant coefficients we
proceed in an analogous fashion to obtain differentiation matrix:

L = ALA−1, (20)

where the matrix AL has entries (AL)ij = Lϕ(‖x−ξj‖)|x=xi . We can use Kansa’s
non-symmetric method to obtain the discretized differential operator. The RBF
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collocation solution is obtained by solving the linear system[
ÃL
Ã

]
α =

[
f

g

]
(21)

where the matrices have the same form as in Kansa’s approach. If we use α from
(21) and once again assume the invertibility of the system matrix, we get

u = Aα = A

[
ÃL
Ã

]−1 [
f

g

]
, (22)

This suggests that the discretized differential operator L based on the grid points
xi, i = 1, . . . , N , and basis functions is given by

LΓ =

[
ÃL
Ã

]
A−1. (23)

3.3 Implicit discrete scheme

We consider the implicit scheme of eqns. (1) and (3):

�cp
T n+1 − T n

	t
+ kx

∂2T n+1

∂x2
+ ky

∂2T n+1

∂y2
= 0, (24)

−kx
∂T n+1

∂x
enx − ky

∂T n+1

∂y
eny − hc(T n+1)

−εRσ((T n+1)4 − T 4R) = −hc(TA), (25)

where tn+1 = tn + 	t, T n+1 and T n are the variable at time tn+1 and tn.
The approximate solution is expressed as:

T (x, tn+1) =
N∑

j=1

αn+1
j ϕj(x), (26)

where αn+1
j , j = 1, . . . , N , are the unknown coefficients to be determined and

ϕj(x) =
√

(x − xj)2 + (y − yj)2 + c2 are Hardy’s multiquadrics functions [12].
By substituting eqn. (26) into eqns. (24) and (25) and using factorization for the

radiation term (T 4 − T 4R), we obtain:

N∑
j=1

(
�cp

ϕj(xi)
	t

+ kx
∂2ϕj(xi)

∂x2
+ ky

∂2ϕj(xi)
∂y2

)
αn+1

j

= �cp
T n(xi)
	t

, i = 1, . . . , N − NB, (27)
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N∑
j=1

(
−kx

∂ϕj(xi)
∂x

enx − ky
∂ϕj(xi)

∂y
eny − hcϕj(xi)

−εRσ (ϕj(xi) − TR) (ϕj(xi) + TR)
(
ϕj
2(xi) + T 2R

))
αn+1

j

= −hc(TA), i = N − NB + 1, . . . , N, (28)

where NB and N present the number at boundary and all discretized points.
The system of nonlinear equations which result from the space discretization of

a nonlinear PDEs can be solved by Picard’s or Newton’s methods. In our case, we
have used the Picard’s method, also known as Successive Substitutions [13, 14].

4 Numerical examples

4.1 One-dimensional charring

The charring rate of wood usually refers to the dimensional rate, e.g. millimetres
per minute, at which wood changes to char. Many factors are involved in wood
charring. Kanury and Blackshear [15] examined various physical effects, including
the diffusion of condensable vapours inward, internal convection outward,
properties of the partially charred wood, kinetics of pyrolysis, energetic of
pyrolysis, and postdecomposition reactions. No completely satisfactorily charring
model has yet been developed.

An extensive data is available for simple one-dimensional charring. Therefore,
a one-dimensional case of a timber slab of spruce, with a depth d, exposed to the
standard fire [16] is analysed in order to compare the charring rate of the wood
slab with the empirical models presented in the literature.

The charring of wood may be modelled by the mass loss rate (g/s) or by the rate
of advance of the formed char front from the original surface (mm/min). Since
the material properties at elevated temperatures are difficult to obtain, constant
material properties of the wood and char are used. The following data has been
used:

T0 = 20◦C, � = 370 kg/m3, kwood = 0.12 kchar = 0.15 W/mK, d = 0.3 m

hc = 22.5 W/m2, εR = 0.9, cp,wood = 1530 J/kgK, cp,char = 1050 J/kgK.

Most known models suggest constant charring rates. In our case, we used a
White and Norheim non-linear empirical model for charring rate of eight different
wood species. The comparison to the present model in the case of spruce is shown
in Fig. 1.

In all empirical models it is assumed that the charring of woods starts
instantaneously after exposure to fire. In reality, this is not the case. In our model,
the charring starts when the temperature of wood reaches the temperature of
pyrolysis, which is around 300 ◦C. This happens nearly 3 minutes after the fire
starts.
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Figure 1: Comparison of White and Nordheim charring model to the present.

4.2 A two-dimensional charring

In the two-dimensional case, the formation of char in a timber beam exposed on
three sides to the standard fire conditions in [16] is considered. The upper edge is
thermally isolated. The original beam cross-section is rectangular with dimensions
10 × 15 cm. The beam cross-section is discretized by the mesh of 10 × 10 points.
Material properties are assumed to be the same as the one-dimensional case. The
results of the simulation at 10 and 30 minutes after the exposure to fire are given
in figures 2 and 3.
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Figure 2: Temperature distribution in the cross-section of spruce beam and the
transformation of wood into char at 10 and 30 minutes calculated with
the Kansa approach, relaxation parameter: 0.14.
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Figure 3: Temperature distribution in the cross-section calculated with the PS
method, relaxation parameter: 0.14.
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Figure 4: Temperature distribution in the cross-section calculated with the PS
method, relaxation parameter: 0.1.

5 Conclusions

Since the analytical solution is seldom obtainable, the idea of this paper was to
represent an alternative approach to the conventional numerical methods. Kansa’s
and PS methods were presented. The results were tested on the one-dimensional
case for which the comparison was made with the results obtained numerically and
experimentally.

In Fig. 1, we can see that our approach gives the results which are comparable
to the results obtained by the model proposed by White and Nordheim. The same
model was used to analyze a two-dimensional behaviour of wood beam exposed to
fire from three sides. It shows that the results are comparable to the results obtained
in literature [6]. Comparison of the figure 2 and 3 indicates that MQ RBFs, PS, and
Picard’s methods give very similar results. Comparison of the results in figures
3 and 4 also show that the results are sensitive to the relaxation parameter. The
simulations also show that badly scaled or narrow basis functions (e.g. linear
(ϕ(r) = r), cubic (ϕ(r) = r3), thin-plate spline (ϕ(r) = r2 log r)) can prevent
the effects of the boundary conditions from propagating inside the domain.

Therefore we can conclude that the presented methods could be an alternative
to the conventional numerical methods. In our future work, moisture diffusion
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equations will be included and special attention should be given to the appropriate
choice of RBFs.
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