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Abstract

The boundary element method (BEM) is a very useful method used for numerical
models of groundwater flow. However, this method was aimed to solve problems
in homogeneous domains and it presents even greater difficulties than the
other numerical methods when coping with the nonhomogeneities which are so
characteristic in the groundwater hydraulics. The meshless LBIE method is a
very promising meshless scheme. This method is characterized as meshless since
distributed nodal points, covering the domain, are employed. Nodal points can be
randomly spread over the domain. Every node is surrounded by a simple surface
(circle) centered at the collocation point and the boundary integral equation is
written on this local boundary. The unknown variables, in the local sub-domains,
are approximated by some of the interpolation methods to obtain a system of linear
equations. Solving this system of equations leads to the numerical solution for the
main problem. Several authors used the moving least squares (MLS) method as an
interpolation method but nowadays the radial basis functions (RBF) interpolation
is used instead. In this paper the combination of RBF and the dual reciprocity
method is used to solve the time-dependent groundwater flow in heterogeneous
domain combined with temperature transport which also influences the density
and viscosity of groundwater.
Keywords: heat transfer, density driven flow, dual reciprocity, radial basis
functions.

1 Introduction

The density driven groundwater flow occurs mainly in some environmental
problems such as saltwater intrusion or leakage from landfills. We must solve this
problem also when we study the geothermal problems. Although density driven
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flow problems are mainly three-dimensional, they are often simulated by vertical
2D numerical models due to their very high computational costs.

The boundary element method and dual reciprocity method (DRM) are very
useful methods used for numerical models of groundwater flow (see e.g. [1]).
However, these method was mainly aimed to solve problems in homogeneous
domains and it presents some difficulties when coping with the non homogeneities
which are so characteristic of the groundwater hydraulics. The disadvantage can
be overcome using some meshless scheme combined with BEM or DRM. The
meshless LBIE method, introduced by Zhu et al. [2], is a very promising meshless
scheme. This method is characterized as meshless since distributed nodal points,
covering the domain, are employed. Nodal points are randomly spread over the
domain. Every node is surrounded by a simple surface (circle) centered at the
collocation point and the boundary integral equation is written on this local
boundary. The unknown variables, in the local sub-domains, are approximated by
some of the interpolation method to obtain a system of linear equations. Solving
this system of equations leads to the numerical solution for the main problem. Zhu
et al. [2] used the moving least squares (MLS) method as an interpolation method
but nowadays the RBF interpolation is used instead (see e.g. [3]). In this paper the
solution of coupled groundwater flow-heat transfer problem based on this RBIEM
method is presented.

2 Governing equations

A density-driven groundwater flow can be described by the following equation
(see also [4])

ρS
∂h

∂t
+ ε

∂ρ

∂t
+ ∇(ρ�q) = 0 (1)

where h is the groundwater potential, ε is the porosity of porous medium, ρ is the
density of solution and �q is the flux defined by

q = −K
(
∇h +

ρ − ρ0
ρ0

∇�x

)
(2)

where K is matrix of hydraulic conductivities and ρ0 initial density of water.
The differential equation of 2D groundwater flow with variable density is now
expressed as

∂

∂x

(
ρKx

∂h

∂x

)
+

∂

∂y

[
ρKy

(
∂h

∂y
+

ρ − ρ0
ρ0

)]
= ε

∂ρ

∂t
+ ρS

∂h

∂t
(3)

where we denote Kx, Ky hydraulic conductivities [LT−1] in direction x and y,
respectively. Heat transfer in porous media can be described by the following
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equation (see e.g. [5])

∂

∂xi

(
KTB

∂T

∂xj
− qiρLcLT

)
= ρBcB

∂T

∂t
(4)

where T is temperature, KT is thermal conductivity, c is specific heat capacity.
The subscripts L and B refer to liquid and bulk phases, respectively.

3 Dual reciprocity formulation

The Eq. (3) can be transformed to the following shape

∂2h

∂x2
+

Ky

Kx

∂2h

∂y2
=

ε

Kxρ

∂ρ

∂t
+

S

Kx

∂h

∂t
− 1

ρ

∂ρ

∂x

∂h

∂x
− (5)

− Ky

Kxρ

∂ρ

∂y

∂h

∂y
− Ky

Kxρρ0

∂

∂y

(
ρ2 − ρρ0

)
To solve Eq. (5) in the domain Ω with boundary Γ using the DRM we should

use the following transformation of co-ordinates

x̃ = x ỹ = y

√
Kx

Ky
(6)

and we get

∂2h

∂x̃2
+

∂2h

∂ỹ2
=

ε

Kxρ

∂ρ

∂t
+

S

Kx

∂h

∂t
− 1

ρ

∂ρ

∂x̃

∂h

∂x̃
− (7)

−1
ρ

√
Ky

Kx

∂ρ

∂ỹ

∂h

∂ỹ
− 1

ρρ0

√
Ky

Kx

∂

∂ỹ

(
ρ2 − ρρ0

)
Applying the Green integral formula to the left side of Eq. (7) we get the

following integral form

ckhk +
∫
Γ

∂u∗
kj

∂n
hjdΓ −

∫
Γ

u∗
kj

∂hj

∂n
dΓ −

∫
Ω

u∗
kjbjdΩ = 0 (8)

Here bj is the value of the right side of Eq. (7) in point j and u∗
kj is the

fundamental solution of Laplace equation. The constant ck has value from 0 to
1 being 0.5 if the point k is placed on the smooth boundary. The DRM is used to
transform the domain integral in Eq. (8) to equivalent boundary integrals (see [6]).
The basic idea is to expand the term bj using the approximation

bj
∼=

Nb+Ni∑
i=1

αifij (9)

where αi is a set of initially unknown coefficients and fij are approximating
functions. The approximation employs Nb nodes on the boundary Γ and Ni points
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inside the domain Ω. The functions fij in Eq. (9) belongs to the family of radial
basis function. The most often used functions are

fij = 1 +
n∑

m=1

rm
ij (10)

Now we can define the series of particular solutions ĥij . These solutions and the
approximating functions fij are linked through the equation

∂2ĥij

∂x̃2
+

∂2ĥij

∂ỹ2
= fij (11)

Applying the Green’s formula to the Eq. (11) and using Eq. (9) we can transform
Eq. (8) and get the boundary only integral formula

ckhk +
∫
Γ

∂u∗
kj

∂n
hjdΓ −

∫
Γ

u∗
kj

∂hj

∂n
dΓ = (12)

=
Nb+Ni∑

i=1

αi

(
ckĥki +

∫
Γ

∂u∗
ki

∂n
ĥijdΓ −

∫
Γ

u∗
ki

∂ĥij

∂n
dΓ

)

The discretized form of Eq. (12) for source point k can be written as

ckhk +
Nb∑
j=1

Hkjhj −
Nb∑
j=1

Gkjqj = (13)

=
Nb+Ni∑

i=1

αi


ckĥki +

Nb∑
j=1

Hkiĥij −
Nb∑
j=1

Gkiq̂ij




where Hkj and Gkj are matrices obtained from the integrations of q∗ and u∗ at
each boundary element. The unknown coefficients αi can be determined from
Eq. (9) as

αi =
Nb+Ni∑

j=1

F−1
ij bj (14)

where F−1
ij are members of the inverse matrix of values of function fij .

4 Radial basis functions interpolation

Radial basis functions (RBF) are initially known as a powerful tool for
approximating multivariate functions on a scattered data. Due to their mesh-free
nature RBF have received an increasing attention for solving partial differential
equations (PDE) of different kinds. The first trial of such exploration was made by
Kansa [7]. Full exploitation of the RBF method was constrained by the progressive
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ill-conditioned coefficient matrix as the number of nodes increases. To remove
this difficulty, Shu et al. (see [8]) suggested using the local RBF method in
which the approximation is formed by using only several local supporting points.
The unknown function U is approximated in a sub-domain which forms the
neighborhood or support of a reference point i by weighted sum of multiquadric
functions and polynomials

U(xi, yi) =
n∑

j=1

λjR (rij) +
m∑

j=1

χjpj(xi, yi) (15)

where λj and χj are weights, R (rij) are the RBF basis functions, and pj is a basis
for polynomial space with degree m − 1, m is the order of R and n is a number
of field nodes in the neighborhood of a reference point. Multiquadric functions are
one of the most popular radial functions used for this purpose and they are defined
as

R(rij) =
√

r2ij + ε2 (16)

where rij is a distance between points i and j and ε is a so-called shape factor
of multiquadric function. Coefficients λj , χj in Eq. (15) can be determined by
enforcing Eq. (15) to be satisfied at these Ni nodes surrounding the point of
interest. This leads to n linear equations, one for each node. The matrix form of
these equations can be expressed as

U = Rλ + Pχ (17)

where U = [U1, U2, . . . UNi ] is a vector of function values in all supporting nodes.
However there are n + m variables in this equation. The additional m equations
can be added using the following m constraint conditions

n∑
i=1

pj(xi, yi)λi = 0, j = 1 . . . m (18)

Combining Eqs.(17) and (18) yields the following set of equations in the matrix
form

u = Aa (19)

where we denoted

A =

[
R p

pT 0

]
, a =

{
λ

χ

}
, u =

{
U
0

}
(20)

The order m of multiquadric functions is equal to one and, therefore, we
need one additional condition to make the interpolation problem well-posed. This
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condition is
n∑

j=1

λj = 0 (21)

Solving Eq. (19) we get
a = A−1u (22)

Eq. (15) can be now written as (see e.g. [9])

U(xi, yi) = [RT (xi, yi) pT (xi, yi)]a = [RT (xi, yi) pT (xi, yi)]A−1u (23)

The first n members of the product [RT (xi, yi) pT (xi, yi)]A−1 create set of
RBF shape functions φj and Eq. (23) can be rewritten as

U(xi, yi) =
n∑

j=1

φjUj (24)

This formula is used to develop the meshless local DRM in the next section.

5 Meshless local DRM formulation

In this section we follow the principle of RBIEM (see [3]). The area of interest Ω
is covered by single nodes on the global boundary Γ and also inside the area (see
Fig. 1). The local network of 16 elements was created around every node. This
simplifies the generation of local boundaries and evaluation of integrals. Next four
virtual internal points was added to every network (see Fig. 2) because the solution
is usually more accurate (see [6]). The values of potential and its derivatives in

Figure 1: Nodes in the global area.
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Figure 2: Local network.

x and y directions in node k can be computed from values of potentials and
derivatives in virtual points using Eq. (9) as

hk =
Nvb∑
j=1

Gijqxjnx +
Nvb∑
j=1

Gijqyjny −
Nvb∑
j=1

Hijhj + (25)

+
Nvb+Nvi∑

k=1


αk


ciĥik +

Nvb∑
j=1

Hikĥkj −
Nvb∑
j=1

Gik q̂kj






∂hk

∂x
=

Nvb∑
j=1

∂Gij

∂x
qxjnx +

Nvb∑
j=1

∂Gij

∂x
qyjny −

Nvb∑
j=1

∂Hij

∂x
hj + (26)

+
Nvb+Nvi∑

k=1


αk


∂ĥik

∂x
+

Nvb∑
j=1

∂Hik

∂x
ĥkj −

Nvb∑
j=1

∂Gik

∂x
q̂kj






where Nvb is the number of virtual boundary points, Nvi is the number of
virtual internal points, hj are the values of potential in virtual points, qxj , qyj

are the derivatives in boundary virtual points in x and y directions and nx, ny

are the directional cosines of outer normal to virtual boundary, respectively. The
derivative in direction y is computed according similar formula to Eq. (26). Values
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of potential and its derivatives can be approximated using RBF interpolation
according Eq. (24) and we get

hk =
Nvb∑
j=1

Gijnx

n∑
m=1

φmqxm +
Nvb∑
j=1

Gijny

n∑
m=1

φmqym − (27)

−
Nvb∑
j=1

Hij

n∑
m=1

φmhm +

+
Nvb+Nvi∑

k=1


αk


ciΦ̂ik +

Nvb∑
j=1

HikΦ̂kj −
Nvb∑
j=1

Gik q̂kj






∂hk

∂x
=

Nvb∑
j=1

∂Gij

∂x
nx

n∑
m=1

φmqxm +
Nvb∑
j=1

∂Gij

∂x
ny

n∑
m=1

φmqym − (28)

−
Nvb∑
j=1

∂Hij

∂x

n∑
m=1

φmhm +

+
Nvb+Nvi∑

k=1


αk


∂ĥik

∂x
+

Nvb∑
j=1

∂Hik

∂x
ĥkj −

Nvb∑
j=1

∂Gik

∂x
q̂kj






where hm, qxm, and qym are values of potential and derivatives in directions x and
y in supporting nodes in the neighbourhood of corresponding virtual points.

Coefficients αk is defined by Eq. (14). The backward difference is used to
approximate the time derivatives of potential on the right side of Eq. (4) and we
get the resulting recurrent system of equations to solve potential and its derivatives
in every node. Equations of heat transfer are solved using the same RBIE method
and also the similar algorithms as the potential flow.

Equations of flow and heat transfer are then coupled by the equations of
state which gives the fluid density and viscosity as functions of temperature.
The coupling scheme was realized by the sequential-iterative approach using the
modified Pickard algorithm:

• Step1: Solution of the transfer equations
• Step2: Update fluid flow properties ρ, µ, Kx, Ky

• Step3: Solution of potential flow
• Step4: Compute velocities of flow
• Step5: Test the convergence of the process

This modified scheme converges much faster then the classical Pickard
algorithm (see [10]).
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6 Numerical example

The RBIEM model has been verified with the Elder problem (see [5]) of free
geothermal convection. The 2D domain is vertically oriented rectangular area filled
with a homogeneous isotropic porous medium (see Fig. 3). It is a free convection
problem where fluid flow is driven purely by fluid density differences. The elevated
temperature of 20oC decreases water density and creates a potentially unstable
situation where denser fluid overlies less dense fluid which leads to upwelling of
warm water and to the formation of thermal fingering. In homogeneous isotropic
media, the onset of free geothermal convection can be determined by the value
of Rayleigh number Ra (see e.g. [5]). This number is the ratio between buoyancy
forces driving free convection and conductive forces. The dimensionless thermal
Rayleigh number can be defined as

Ra =
KHcL∆ρL

KT
(29)

where K is the hydraulic conductivity, H is the height of the model domain, cL is
the specific heat of the liquid, KT is the thermal conductivity, and ∆ρ is the fluid
density difference between the top and the bottom of the domain. The minimum
value of the critical Rayleigh number Racr = 4π2. It is valid if and only if the
aspect ratio of the domain a = L/H is an integer value (see [11]). According
to theory, simulations with Ra < Racr are conductive, whereas systems with
Ra > Racr exhibit convective and unstable flow.

The solved problem has the aspect ratio a = L/H = 2 and therefore the critical
Rayleigh number is Racr = 4π2 = 39.478. The coefficients, used in the solution

Figure 3: Elder problem.
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Table 1: Parameters of the solved problem.

Quantity Value Unit

Porosity 0.1 —

Hydraulic conductivity 1.21E-04 ms−1

Bulk thermal conductivity 1.49 Wm−1K−1

Specific heat capacity 4186 Jkg−1K−1

Initial temperature 12 oC

Figure 4: Detail of virtual network.

of the problem, are presented in Tab.1. The Rayleigh number computed for this
problem is Ra = 6.612 < Racr and the problem is conductive and unstable flow
should not occur. The domain is covered by 496 regularly distributed nodes and
virtual networks were created around all node (see Fig. 4). The time step was 0.1
day. Fig. 5 shows the computed velocity field in 20 days and the increasing roll can
be seen at the left part of the domain. The temperature distribution is presented in
the form of isotherms at Fig. 6.

7 Conclusions

The possibility of RBIEM meshless method for modeling the density driven flow
is presented in this paper. The research is at the beginning and the following
study should be focused on the convective unstable situations models and on
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Figure 5: Resulting velocity field.

Figure 6: Isotherms.

the modification of the existing algorithms to enable distributed processing. It is
necessary to choose suitable tools which give us ability to parallel solving of very
large network systems which usually exist in practical solutions.
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