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Abstract

The present developments combine the variationally-based, hybrid boundary
element method with a consistent formulation of the conventional, collocation
boundary element method in order to establish a computationally less intensive
procedure, although not necessarily less accurate, for large-scale, two-dimensional
and three-dimensional problems of potential and elasticity, including time-
dependent phenomena. Both the double-layer and the single-layer potential
matrices, H and G, whose evaluation usually requires dealing with singular and
improper integrals, are obtained in an expedite way that circumvents almost any
numerical integration – except for a few regular integrals in the case of H.
A few numerical examples are shown to assess the applicability of the method,
its computational effort and some convergence issues.
Keywords: boundary elements, meshless methods, hybrid boundary elements.

1 Introduction

The collocation boundary element method (CBEM), whenever applicable, is a
simple, powerful numerical analysis tool [1]. The present contribution is an attempt
to show that the CBEM can be still more efficient and powerful – and still easier
to implement computationally. (A not lesser contribution is the demonstration
that simplicity can be achieved without resorting to exotic concepts such as node
displacements from corner points or regularizations.)

Some precursory works have already been published on the subject [9] or are
being prepared [11]. However, this is the first attempt to summarize the basic
concepts that lead to the expedite boundary element method (EBEM) and to show
its main features and possibilities of application in an outline that is meant to be
itself expedite.
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2 Problem formulation

An elastic body is submitted to body forces bi in the domain Ω and traction forces
ti on part Γσ of the boundary. Displacements ui are known on the complementary
part Γu of Γ. One is looking for an adequate approximation of the stress field that
satisfies equilibrium in the domain,

σji,j + bi = 0 in Ω (1)

also satisfying the boundary equilibrium and compatibility equations,

σjinj = ti along Γσ, ui = ui on Γu (2)

where nj is the outward unit normal to Γ. Indices i, j, (also k, l) may assume values
1, 2 or 3, as they refer to the coordinate directions x, y or z, respectively, for a
general 3D analysis. Summation is indicated by repeated indices. Particularization
to 2D analysis as well as to potential problems is straightforward.

2.1 Stress and displacement assumptions

Three independent fields are used in the following developments. The
displacement field is explicitly approximated along the boundary by ud

i , where
( )d means displacement assumption, in terms of polynomial functions uim with
compact support and nodal displacement parameters d = [dm] ∈ R

nd

, for nd

displacement degrees of freedom of the discretized model. An independent stress
field σs

ij , where ( )s stands for stress assumption, is given in the domain in terms
of some particular solution σp

ij plus a series of fundamental solutions σ∗
ij m with

global support, multiplied by force parameters p∗ = [p∗m] ∈ R
n∗

applied at the
same boundary nodal points m to which the nodal displacements dm are attached
(n∗ = nd). Displacements us

i are obtained from σs
ij . Then,

ud
i = uim dm on Γ such that ud

i = ūi on Γu and (3)

σs
ij = σ∗

ijm p∗m + σp
ij such that σ∗

jim,j = 0 and σp
ji,j = bi in Ω (4)

⇒ us
i = u∗

im p∗m + up
i + ur

is Csm p∗m in Ω (5)

where u∗
im are displacement fundamental solutions corresponding to σ∗

ijm. Rigid
body motion is included in terms of functions ur

is multiplied by in principle
arbitrary constants Csm ∈ Rnr×n∗

, where nr is the number of rigid body
displacements (r.b.d.) of the discretized problem, as dealt with formally in
Definition 1, introduced in Section 4 [7, 10]. The fundamental solutions σ∗

ijm are
used as weight functions in the CBEM. In the variational BEMs and in the EBEM,
in particular, they represent domain interpolation functions.

The third independent field is used to approximate traction forces along
the boundary by tti, where ( )t means traction assumption, as required in the
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conventional boundary element method, given as

tti = ui�t� in the CBEM, (6)

where ui� are polynomial interpolation functions with compact support and t =
[t�] ∈ R

nt

are traction-force parameters. The index i refers to the coordinate
directions whereas the index � refers to any of the nt traction-force degrees of
freedom of the problem (thus denoting both location and orientation), for nodes
adequately distributed along boundary segments of Γ. The interpolation functions
ui� have the same properties of uin, as presented in eqn (3). Equation (6) holds as
ti = ui�t� along Γσ, in particular, according to eqn (2). An improved version of
eqn (6) is proposed for problems with curved boundaries,

tti = ui�

|J |(at �)

|J | t� ≡ ti�t� in the MBEM, (7)

which leads to the modified boundary element method (MBEM) [8]. In this
equation, |J |(at �) is the value of the Jacobian of the global (x, y, z) to natural (ξ, η)
coordinate transformation at the nodal point � and the term |J |(at �)/|J | features
a term in the denominator that cancels the Jacobian term of the infinitesimal
boundary segment dΓ = |J |dξdη in the numerator of two integral expressions
introduced in eqns (10) and (14). This not only improves the capacity of tti to
represent the traction forces along curved boundary segments but also simplifies
the numerical integration of the related terms. In the subsequent developments,
one refers to the approximation of the traction forces on Γ generically as given in
eqn (7), tti = ti�t�, explaining in the text, whenever explicitly required, whether
eqn (6) or (7) is meant.

The numbers of degrees of freedom for traction forces nt and displacements
nd are not necessarily the same, since one may need more than one traction-force
parameter to represent tractions that are not single valued at the boundary surface,
generally at nodes where adjacent boundary segments present different outward
normals [8]. Then, it results that nt ≥ nd, as t� in eqns (6) and (7) are traction-
force attributes on boundary segments, whereas uin in eqn (3) are displacement
attributes at nodal points. The fact that nt ≥ nd leads to some rectangular matrices
– the same eqns (14) and (10) of the CBEM, which have been just referred to, plus
a third one, introduced in eqn (21).

2.2 Boundary approximation of the particular solution

Although neither conceptually nor formally necessary, the following approxima-
tion may render all subsequent equations simpler and more elegant [7]. Given a
sufficiently refined boundary mesh, the displacements up

i and the traction forces
tpi related to an arbitrary particular solution of the non-homogeneous govern-
ing eqn (1), whenever available, can be approximated accurately enough by
nodal displacement parameters dp = [dp

n] ∈ R
nd

and traction force parameters
tp = [tp� ] ∈ R

nt

, respectively, in terms of the interpolation functions of eqns (3)
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and (6) or (7):
up

i ≈ uindp
n , tpi ≈ ti�t

p
� on Γ (8)

One assumes with the above equations that a particular solution for the domain
forces bi in eqn (1) is known in terms of displacements up

i and stresses σp
ij . The

means to obtain such particular solutions other than in close form are not discussed
herein (see, for instance, Partridge et al [14]).

3 Conventional and modified boundary element methods

The matrix equation of the CBEM [1] may be expressed as [8]

H (d − dp) = G (t− tp) (9)

where H = [Hmn] ∈ R
nd×nd

is a kinematic transformation matrix [5, 7, 10] and
G = [Gm�] ∈ R

nd×nt

is a flexibility-like matrix (that is in general rectangular, as
proposed). The formal definition of these matrices is

Hmn =
∫
Γ

σ∗
jimηjuindΓ , Gm� =

∫
Γ

ti�u
∗
imdΓ (10)

The double-layer and single-layer potential matrices Hmn and Gm� comprise in
their definition singular and improper integrals, respectively, when source (m) and
field (either n or �) indexes refer to the same nodal points. The singular integrals
can be always evaluated mathematically in correspondence to simple mechanical
meanings [1]. A conceptual assessment of eqn (10) is given in Reference [8].

4 Some virtual-work statements

Several virtual-work statements are outlined in the following. They are actually
theorems that must be proven from some mechanical axioms. Some of them have
already been dealt with in References [6–10]. In this paper, one attempts to keep
full consistency of the equations while being not too formal. This compromise is
hopefully achieved with the following definition.

Definition 1 Let nr be the number of independent r.b.d. of an elasticity problem,
in general. Then, nr = 3 or 6 for 2D or 3D problems (and nr = 1 for potential
problems) Problems involving symmetry present different values of nr. One may
eventually have nr = 0, as for an infinite domain. The r.b.d. W ∈ Rnd are spanned
by the columns of a matrix W ∈ Rnd×nr , which is orthogonal, for convenience.

4.1 Displacement virtual-work statement

Part of the Hellinger-Reissner potential [5, 10] leads to the equilibrium equation

Hmn p∗m = pn − pp
n or HT p∗ = p− pp (11)

in which H = [Hnm] ∈ R
nd×n∗

is the same double layer potential matrix of
the collocation boundary element method [1], already introduced in eqn (10).
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Moreover, p = [pn] ∈ R
nd

and pp = [pp
n] ∈ R

nd

, defined as

pn =
∫
Γ

σjinjuin dΓ , pp
n =

∫
Γ

σp
jinjuin dΓ (12)

are vectors of equivalent nodal forces corresponding respectively to applied
boundary tractions, as given in eqn (2) and to the particular solution of eqn (4).

4.2 Virtual-work relations between the approximate fields given by d and t

It may be convenient to express the boundary traction approximations of eqns (6)
or (7) in terms of equivalent nodal forces, obtained from the virtual work statement:

δdmpm(t) = δdm

∫
Γ uimti�dΓt�

⇒ pm(t) = L�mt� or p(t) = LTt
(13)

where the interpolation functions of eqns (3) and (7) (as for the MBEM) were used,
thus defining

L = [L�m] ∈ R
nt×nd

=
∫
Γ

ti�uimdΓ (14)

As given in eqn (13), LT performs an equilibrium transformation of traction-
force parameters t to equivalent nodal forces p(t). The argument (t) shows that
p(t) is a function of t, thus one of three possible approximations. Observe that,
according to Definition 1, WT (p(t) − pp) = WTLT (t− tp) = 0 for a problem
consistently formulated.

One may express the contragradient statement

p(t) = LTt ⇒ dt(d) = Ld (15)

where dt(d) are equivalent nodal displacements defined such that δtTdt(d) has
the meaning of virtual work. This contragradient statement is part integrand of the
hybrid displacement BEM, which may be derived from the Hu potential [4,7,13].

4.3 Virtual-work relations between the approximate fields given by d and p∗

One obtains from eqn (11) the contragradient relation

p(p∗) = HTp∗ ⇒ d∗(d) = Hd (16)

where d∗(d) are equivalent nodal displacements defined such that δp∗Td∗(d) has
the meaning of virtual work.

4.4 Subspaces of admissible forces for the field approximations

The matrix W of nodal r.b.d. was introduced in Definition 1, which is also the
subspace of forces p that are not in balance. As remarked after eqn (14), the
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columns of WTLT span the subspace of forces t that are not in balance [6]. For
a finite domain, the columns of W are the null space of H. Then, one obtains
for consistency of eqn (11) that balanced forces p∗ must be orthogonal to the null
space V of HT [5]. These conclusions are formalized in the following theorem.
Theorem 1 The columns of the matrices W, LW and V span the subspaces of
r.b.d. of the approximating fields represented by the parameters d, dt and d∗,
respectively. Each one of the vectors p, t and p∗ represent nodal forces that are in
equilibrium if and only if WTp = 0, WTLTt = 0 and VTp∗ = 0, respectively.

4.5 An approximation of the double-layer potential matrix H

Equation (5) may be applied to the boundary nodes [7, 10], thus asserting that ud
i

– from eqn (3) – and us
i should coincide along Γ:

U∗p∗ + WCp∗ = (d− dp) (17)

where WCp∗ accounts for an amount of r.b.d. that cannot be transformed between
the approximating fields whose parameters are p∗ and d. The above equation is
a very simple statement, except that there is an embedded amount of r.b.d. and –
most important – that the terms of U∗ = [U∗

mn] ∈ R
nd×nd

for m and n referring
to the same node cannot be directly evaluated.

One may assert on the basis of Theorem 1 that, if the set of parameters p∗ in
eqn (17) corresponds to forces in balance, then VTp∗ = 0 ⇒ WCp∗ = 0 [10]
and the following contragradient statement holds:

U∗p∗ = d(p∗) ⇒ U∗Tp = d∗(p) , provided that VTp∗ = 0 , WTp = 0
(18)

Then, if one uses eqn (13) to define a set of equivalent nodal forces p(t) and
eqn (16) to define a set of equivalent nodal displacements d∗(d), the right-hand
side of the above equation becomes

U∗TLTt = Hd (19)

By comparing this equation with eqn (9), one concludes that

U∗TLT ≈ G (20)

which can be formally obtained in the frame of an energy theorem [10, 11].

4.6 An approximation of the single-layer potential matrix G

Equation (17) was obtained by simply asserting that eqn (3) should hold for nodal
points along Γ (it actually has a variational basis [5, 7, 10]). A similar assertion
may be made for traction forces along Γ,

T∗p∗ = t(p∗) (21)

with the introduction of the matrix T∗ = [T ∗
�m] ∈ R

nt×n∗
of traction forces,

obtained by measuring the effect σ∗
jimnj at a boundary node and direction
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characterized by � caused by a unit force p∗m, according to eqn (4). Application
of a contragradient statement leads to [11]

T∗p∗ = t(p∗) ⇒ T∗Tdt = d∗(dt) , r.b.d. excluded (22)

The expression on the right-hand side may be written in an amenable format if
one resorts to the expressions of dt and d∗ in eqns (15) and (16):

T∗TLd = Hd , r.b.d. excluded (23)

which involves only nodal displacements d. Since HW = 0 for a finite Ω, r.b.d.
are automatically excluded in the term on the right-hand side.

Then, one may conclude that

T∗TL ≈ H (24)

provided that the terms of T∗ = T ∗
�m, for m and � referring to the same nodal

point, are somehow evaluated and that, at least, one makes sure that

T∗TLW = 0 for a finite Ω (25)

5 The expedite boundary element method

Equations (20) and (24) are together the expression of the expedite boundary
element method – EBEM,

T∗TL (d − dp) = U∗TLT (t− tp) (26)

as a reasonable approximation of eqn (9) for the CBEM, here repeated for clarity,

H (d − dp) = G (t− tp)

provided that the puzzle of obtaining the still undefined coefficients of U∗ and T∗

is solved. If one prefers to work in terms of equivalent nodal forces, as in the finite
element method, eqn (26) can be alternatively written, according to eq. (13), as

T∗TL (d− dp) = U∗T (p − pp) (27)

which is an additional, operational advantage of the proposed EBEM.

5.1 Evaluation of the undefined coefficients of T∗

The matrix T∗ of traction forces introduced in eqn (21) is rectangular. However,
one is actually interested in obtaining the undefined values of the square matrix
given as the product T∗TL of either eqn (26) or (27).

The matrix L, as defined in eqn (14), has the same numbers of rows and
columns as T∗, but is banded, with non-zero coefficient L�m only if the nodal
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displacement δdm and the traction-force attribute t� refer to the same boundary
segment (element).

Since L is banded, the undefined coefficients of T∗ affect the coefficients (m, n)
of the product T∗TL that refer to the same boundary element. One concludes
that the coefficients (m, n) of this matrix product, when referring to different
boundary elements, can be obtained directly. On the other hand, the number
of undefined coefficients of the product T∗TL is larger than the number of
undefined coefficients of T∗. Since there is a strong singularity affecting the
coefficients of T∗TL, this must be taken into account, as proposed in the following
algorithm [11].

Algorithm for the evaluation of the coefficients of T∗TL
1. If the indices (m, n) of T∗TL refer to a boundary segment that is not

adjacent to a singularity, then just evaluate the coefficient as the indicated
product.

2. If the indices (m, n) refer to a node that is adjacent to a singularity, then
replace the coefficient with the corresponding value of H, eqn (10), which
requires the evaluation of a regular integral (uin = 0 at the singularity point).

3. If the indices (m, n) refer to a node directly affected by a singularity,
evaluate the coefficient by forcing the matrix to be orthogonal to rigid-body
displacements. (For an unbounded domain, use the complementary, bounded
domain. In case of symmetries, when the number of r.b.d. is not sufficient,
additionally apply the problem to a simple analytical solution.)

5.2 Evaluation of the undefined coefficients of U∗

Once the undefined coefficients of the product T∗TL are evaluated, the best and
only way of obtaining the undefined coefficients of U∗ is by applying either
eqn (26) or (27) to a sufficient number of simple solutions. Let either (Da,Ta)
or (Da,Pa) represent a set with a sufficiently large number of simple analytical
solutions of the homogeneous differential equations (1) of the problem that is
being modeled, given in terms of displacements and of either surface tractions
parameters or equivalent nodal forces. The coefficients about the main diagonal of
U∗ are obtained in such a way that either∣∣∣T∗TLDa − U∗TLTTa

∣∣∣ = min or
∣∣∣T∗TLDa − U∗TPa

∣∣∣ = min (28)

with actually more equations than unknowns, in order to have no direction
preferences in the evaluation of the coefficients of U∗, which leads to a solution
in terms of least squares. For potential problems, the number of constant fluxes
is either two or three, for 2D or 3D problems, and just one unknown per node.
For general elasticity problems, there are either three or six constant stress states,
for 2D or 3D problems, and either 2 × 2 or 3 × 3 unknowns (if symmetry is not
enforced). This solution scheme is similar to the one adopted in the HBEM for the
evaluation of the undefined coefficients of the flexibility matrix F [2, 3, 5, 10–13].
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6 Some numerical examples

Figure 1 shows on the left an irregularly shaped domain for which some of the
equations and concepts outlined in this paper are assessed numerically in the frame
of the solution of the 2D Laplace equation. The figure has corner coordinates
(0, 0), (10, 20), (20, 0), (15, 35), (0, 20), (17, 19), (16, 22), (21, 24) and (22, 20).
The four curved boundary segments have radii of curvature 20, 15, 4 and −4. The
numerical model is implemented in Fortran with double precision. The scheme
shown in Figure 1 has a total of 124 nodes [8]. The problem is modeled using
linear, quadratic and cubic elements with differently refined meshes, for the total
numbers of nodes shown in Table 1. A series of patch tests is run for potential
fields applied to the models, according to Table 2, where the potential ln r/2π
refers to either of the indicated source points A = (−5, 2), B = (10, 2) or
C = (19.5, 20.5).

In order to estimate the highest numerical accuracy to be expected in the tests,
convergence is first assessed for eqn (9) in the frame of either the CBEM, thus
using eqn (6), or of the MBEM, which uses eqn (7) for the interpolation of traction

Table 1: Total numbers of nodal points for the numerical model of Figure 1.

Element type Total number of nodal points

Linear

Quadratic

31 62 124 248 496 992 1984 –

– 62 124 248 496 992 1984 3968

Cubic – 93 186 372 774 1488 2976
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Figure 1: Discretization scheme according to Table 1 and convergence assessments
of eqn (9) for the potential fields of Table 2 to establish a benchmark.
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Table 2: Potential fields applied to test the numerical model of Figure 1.

S1a S1b S2a S2b S3a S3b S4a S4b SLg

x y xy x2−y2 x3−3xy2 y3−3x2y x4+y4−6x2y2 x3y−xy3 ln r/2π

gradients. The results are expressed in terms of the error norm

ε (Hd − Gt) =

√√√√∑
m

(∑
n

Hmndn −
∑

�

Gm�t�

)2 /∑
m

(∑
n

Hmndn

)2
(29)

for sets of boundary solutions (d, t) corresponding to the applied potential fields
of Table 2. Convergence results for the MBEM with cubic elements are shown
on the right of Figure 1. The results for the CBEM are almost indistinguishable
from these ones, except when linear potential fields S1a or S1b are applied, as
in such a case the error norm of eqn (29) is equal to zero (within numerical
integration errors) in the MBEM for curved boundaries, which does not happen
with the CBEM. Figure 1 shows the expected convergence pattern of a consistently
formulated numerical method up to an error norm ε ≈ 10−6, when numerical
integration errors tend to prevail and accuracy hardly improves with increasing
mesh refinement.

Figure 2 shows the convergence patterns for the best and worst numerical
results obtained for the sets of potential fields of Table 2. The results on the left
correspond to the linear potential field S1a. The CBEM and the MBEM coincide
for linear elements (Con l and Mod l), as there are only piecewise straight boundary
segments. However, the higher accuracy of the MBEM is flagrant for quadratic and
cubic elements (Mod q and Modc compared to Conq and Conc), with exact values
given the threshold of numerical integration errors. The corresponding results with
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Figure 2: Error norm of eqn (29) for the linear potential field S1a (on the left) and
for a logarithmic field with source at point C in Figure 1.
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the EBEM for linear, quadratic and cubic elements (Expl, Expq and Expc are
also shown. These graphics actually show the error residuals of the least-square
procedure used to evaluate the diagonal coefficients of U∗ in eqn (28). Accuracy
improves monotonically, although not in the same rate of the CBEM.

The graphics on the right of Figure 2 correspond to the same type of analysis
on the left, but for a logarithmic source centered at point C of Figure 1, with error
results of eqn (29) that are almost indistinguishable from the ones for a source at
point A. For high gradient fields, the results with the CBEM and the MBEM are
almost the same [8]. The results with the EBEM are initially comparable to the
ones of the CBEM. (In the example shown, the results with the EBEM for a coarse
mesh are actually better, but no general conclusions can be drawn.) However, the
convergence rate is smaller for the EBEM than in the case of the CBEM. The best
results with the EBEM, in this and in other examples for 2D potential problems,
are obtained in the implementation with quadratic elements. The results of the
EBEM are consistently more accurate than in the implementations of the CBEM
using linear elements, a pattern that is also observed in other numerical examples.

Conclusions

An expedite formulation of the boundary element method is proposed. No
integrations are required, except for a few regular ones for a narrow band of
coefficients above and below the main diagonal of the matrix that approximates
the double-layer potential matrix H. The improved treatment of boundary
traction forces leads to simplifications of the conventional BEM itself and to
the construction of the auxiliary kinematic/equilibrium transformation matrix
L in a way that also circumvents integration. Although not shown, one may
combine the formulation with an efficient technique (GMRES) for the iterative
solution of very large equation systems, which also enables the evaluation of
results at internal points with no further post-processing. As proposed, the EBEM
promises to be superior to the fast multi-pole methods in concept, implementation
and computational efficiency. Application of the formulation to time-dependent
problems in the frequency domain is straightforward. An extended version of
the present manuscript is being prepared, in which numerical examples of three-
dimensional problems are also shown.
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