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Abstract

The main objective of this work is to obtain an efficient three-dimensional
boundary element (BE) formulation for layered soil simulation. This formulation
is obtained by combining an alternative multi-region technique with an infinite
boundary element (IBE) formulation. Kelvin fundamental solutions are employed,
considering the static analysis of isotropic and linear-elastic domains.

Establishing relations between the displacement fundamental solutions of the
different domains, the alternative technique used in this paper allows analyzing all
domains as a single solid, not requiring equilibrium or compatibility equations.
This approach also leads to a smaller system of equations when compared to the
usual subregion technique, and the results obtained are more accurate.

The two-dimensionally mapped infinite boundary element (IBE) formulation
here used is based on a triangular BE with linear shape functions. One advantage
of this formulation over quadratic or higher order elements is that no additional
degrees of freedom are added to the original BE mesh by the presence of the IBEs.
Thus, the IBEs allow the mesh to be reduced without compromising the accuracy
of the result.

The use of IBEs improves the advantages of the alternative multi-region
technique, contributing for the low computational cost and allowing a considerable
mesh reduction. Furthermore, the results show good agreement with the ones given
in other work, confirming the accuracy of the presented formulation.
Keywords: infinite boundary elements, alternative multi-region technique, three-
dimensional soil, static analysis.
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1 Introduction

Considering specifically infinite multi-domain models, many options are available
in the literature and each one of them implies on advantages and disadvantages.
However, depending on the problem to be solved, one technique may become more
attractive then the others.

Most cases, a numerical approach may be employed. The finite element method
(FEM) is still popular (Karakus et al. [1]), however has some disadvantages when
compared to other options such as the boundary element method (BEM). The
FEM requires the discretization of the infinite domain, implying on a high number
of elements and leading to a large and sometimes impracticable processing time.
To reduce these inconveniences, some authors use infinite elements together with
finite elements, such as Sadecka [2].

It becomes more viable to solve these problems with the BEM, once only the
boundary of the domains requires discretization. This allows reducing the problem
dimension, implying on less processing time. This advantage is explored in several
works (Almeida and Paiva [3]) and more developments are making the BEM even
more attractive to future applications.

The classical way to consider domains in contact with the BEM, which is des-
cribed in details by Brebbia and Dominguez [4], is based on imposing equilibrium
and compatibility conditions for all interface points between every pair of domains
in contact. These impositions may cause inaccuracies, and numerous blocks of
zeros are generated at the final system of equations.

However, Ribeiro and Paiva [5] present an alternative multi-region BEM
technique, which does not require equilibrium nor compatibility conditions along
the interfaces. Considering a constant Poisson ratio, it is possible to establish
relations between the displacement fundamental solutions and to analyze all
subdomains as a single solid. Thus, a better continuity between domains in contact
is guaranteed and therefore the result accuracy is improved. In addition to that,
no blocks of zeros are present at the final system of equations, which is reduced.
Thus, better results are obtained in less processing time.

Another way to improve the BEM performance is by using infinite boundary
elements (IBEs). The first reference to an IBE was Kagawa et al. [6], in which the
shape functions of an origin BE are multiplied by special decay functions. Another
type of IBE may be obtained by using mapped functions to relate the local system
of coordinates to the global one, as originally shown by Beer and Watson [7].
In those studies that make use of two-dimensional IBEs, such as performed by
Moser et al. [8], it may be noted that they are generally based on quadrilateral
BEs. An alternative to these type of IBE is given by Ribeiro and Paiva [9], which
presented a mapped IBE based on a triangular BE with linear shape functions.
One advantage of this approach over quadratic or higher order elements is that no
additional degrees of freedom are added to the original BE mesh by the presence
of the IBEs.

The aim of this work is to combine the two BE techniques presented in [5, 9],
obtaining a new and more efficient multi-region BE formulation for layered soil

276  Boundary Elements and Other Mesh Reduction Methods XXXII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press



simulation. The soil is modeled with variable elasticity module and a constant
Poisson ratio, as described by Gibson [10]. The results obtained are consistent
with those of another author, confirming the accuracy of the presented approach.
In addition to that, the use of IBEs contributed for the low computational cost,
allowing a considerable mesh reduction.

2 Boundary element formulation

The equilibrium of a solid body can be represented by a boundary integral equation
called the Somigliana Identity, which for homogeneous, isotropic and linear-elastic
domains is

cij (y)uj (y) +

∫
Γ

p∗ij (x, y) uj (x) dΓ (x) =

∫
Γ

u∗ij (x, y) pj (x) dΓ (x) (1)

Eqn (1) is written for a source point y at the boundary, where the displacement is
uj (y). The constant cij depends on the Poisson ratio and the boundary geometry
at y. The field point x goes through the whole boundary Γ, where displacements
are uj (x) and tractions are pj (x). The integral kernels u∗ij (x, y) and p∗ij (x, y) are
Kelvin three-dimensional fundamental solutions for displacements and tractions,
respectively. Kernel u∗ij (x, y) has order 1/r and kernel p∗ij (x, y) order 1

/
r2, where

r = |x− y|, so the integrals have singularity problems when x approaches y.
Therefore the stronger singular integral, over the traction kernel, has to be defined
in terms of a Cauchy Principal Value (CPV).

To solve eqn (1) numerically, the boundary is divided into subregions within
which displacements and tractions are approximated by known shape functions.
Here these subregions are of two types, finite boundary elements (BEs) and infinite
boundary elements (IBEs). The BEs employed are triangular, as shown in fig. 1
with the local system of coordinates, ξ1ξ2, and the local node numbering. The

Figure 1: Triangular boundary element.
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following approximations are used for this BE:

uj =

3∑
k=1

Nkukj , pj =

3∑
k=1

Nkpkj (2)

Eqn (2) relate the boundary values uj and pj to the nodal values of the BE. The
BEs have 3 nodes and for each node there are three components of displacement
ukj and traction pkj . The shape functionsNk used for these approximations are

N1 = ξ1, N2 = ξ2, N3 = 1− ξ1 − ξ2 (3)

The same shape functions are used to approximate the boundary geometry:

xj =

3∑
k=1

Nkxkj (4)

where xkj are the node coordinates. The same functions are also used to interpolate
displacements and tractions for the IBEs:

uj =

Np∑
k=1

Nkukj , pj =

Np∑
k=1

Nkpkj (5)

Each IBE has Np nodes and not the 3 that the BEs have. The IBE geometry,
on the other hand, is approximated by special mapping functions, as discussed in
more detail in Section 3.

By substituting eqns (2) and (5) in eqn (1), eqn (6) is obtained:

cij (y)uj (y) +
NBE∑
e=1

{
3∑

k=1

[
Δpekij u

k
j

]}
+

NIBE∑
e=1

{
Np∑
k=1

[
Δ∞pekij u

k
j

]}
=

NBE∑
e=1

{
3∑

k=1

[
Δuekij p

k
j

]}
+

NIBE∑
e=1

{
Np∑
k=1

[
Δ∞uekij p

k
j

]} (6)

NBE is the number of BEs and NIBE is the number of IBEs. For BEs:

Δpekij =

∫
γe

|J |Nkp∗ij (x, y) dγe, Δuekij =

∫
γe

|J |Nku∗ij (x, y) dγe (7)

In eqn (7), γe represents the domain of element e in the local coordinate system
and the global system of coordinates is transformed to the local one by the Jacobian
|J | = 2A, where A is the element area in the global system. On the other hand,
for IBEs:

Δ∞pekij =

∫
γe

|∞J |Nkp∗ij (x, y) dγe, Δ∞uekij =

∫
γe

|∞J |Nku∗ij (x, y) dγe

(8)
Eqn (8) is analogous to eqn (7), and the calculation of Jacobian |∞J | is

discussed in Section 3. Integrals of eqns (7) and (8) are calculated by standard
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BEM techniques. Non-singular integrals are evaluated numerically by using
integration points. The singular ones, on the other hand, are evaluated by the
technique presented in reference [11]. Finally, the free term cij may be obtained
by rigid body motions.

Writing eqn (6) for all boundary nodes leads to the following system:

Δp · u = Δu · p (9)

The Δpekij and Δ∞pekij element contributions, including the free term cij , are
assembled into matrix Δp, while Δuekij and Δ∞uekij contributions are assembled
into matrix Δu. Vectors u and p contain all boundary displacements and tractions,
respectively. Reorganizing this system so as to separate the known boundary values
from the unknown yields a system of equations whose solution is all the unknown
boundary values.

3 Infinite boundary elements

Three types of mapping are considered, as illustrated in fig. 2.

Figure 2: Types of mapping.
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In the first type, represented in fig. 2a, only direction ξ1 is mapped and node 1
is placed at infinity. The IBE is represented in the local coordinate system on the
left and in the global coordinate system on the right. The global coordinates xi are
related to the local ones by special mapping functions, Mk, and the nodal global
coordinates, xki . Node 4 is created only to replace node 1 in the mapping and does
not contribute to the integrals.

Fig. 2b is analogous to fig. 2a, but in this case only direction ξ2 is mapped and
node 2 is placed at infinity. Therefore, node 5 is created to facilitate the mapping.
Finally, in fig. 2c both local directions are mapped and nodes 1 and 2 are placed at
infinity. As a result, the auxiliary nodes 4 and 5 must be created to replace them in
the mapping.

Ribeiro and Paiva [9] use auxiliary coordinates ξ̄1 and ξ̄2 to obtain the mapping
functions for each case. When only direction ξ1 is mapped, the result is:

M4
1∞ = ξ̄1 (ξ1) =

ξ1
1− ξ1

(10)

M2
1∞ = ξ2 (11)

M3
1∞ = 1− ξ̄1 (ξ1)− ξ2 = 1− ξ1

1− ξ1
− ξ2 (12)

The symbol “1∞” is used to indicate that these expressions are valid if only
direction ξ1 is mapped. These functions are then employed to relate the local
system of coordinates to the global one. In other words:

xi =M4
1∞x

4
i +M2

1∞x
2
i +M3

1∞x
3
i (13)

After obtaining eqn (13), the Jacobian used when only direction ξ1 is mapped
may be calculated as follows:

|∞J1| = ∂x1
∂ξ1

∂x2
∂ξ2

− ∂x2
∂ξ1

∂x1
∂ξ2

=
2A1

(1− ξ1)
2 (14)

where A1 is the area of the triangle drawn between nodes 2, 3 and 4 in the global
system of coordinates.

For mapping only in direction ξ2, the functions obtained are:

M1
2∞ = ξ1 (15)

M5
2∞ = ξ̄2 (ξ2) =

ξ2
1− ξ2

(16)

M3
2∞ = 1− ξ1 − ξ̄2 (ξ2) = 1− ξ1 − ξ2

1− ξ2
(17)

The symbol “2∞” is used to indicate that only direction ξ2 is mapped.
Therefore, the global system is related to the local one as follows:

xi =M1
2∞x

1
i +M5

2∞x
5
i +M3

2∞x
3
i (18)
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and the Jacobian is

|∞J2| = 2A2

(1− ξ2)
2 (19)

where A2 refers to the area of the triangle drawn between nodes 1, 3 and 5 in the
global system of coordinates.

Finally, for mapping in both directions ξ1 and ξ2, the mapping functions are

M4
∞ =

ξ1
1− ξ1

(20)

M5
∞ =

ξ2
1− ξ2

(21)

M3
∞ = 1− ξ1

1− ξ1
− ξ2

1− ξ2
(22)

The symbol “∞” is used to indicate that both directions are mapped. The local
system of coordinates is related to the global one as follows:

xi =M4
∞x

4
i +M5

∞x
5
i +M3

∞x
3
i (23)

and the Jacobian is now

|∞J3| = 2A3

(1− ξ1)
2 (1− ξ2)

2 (24)

where A3 is the area of the triangle drawn between nodes 3, 4 and 5 in the global
system.

4 Alternative multi-region formulation

In fig. 3 a problem with two regions and submitted to arbitrary boundary conditions
is presented.

The regions have the same Poisson ratio ν and different elasticity modules, E1

for region Ω1 and E2 for region Ω2. The boundary Γ1 of region Ω1 is divided
in two parts, Γ12 and Γ̄1. The part of Γ1 which is in contact with region Ω2 is
denoted by Γ12 and the rest of it is named Γ̄1. Analogously, region Ω2 boundary
Γ2 is divided into Γ21 for the contact and Γ̄2 for the free surface. Consequently:

Γ1 = Γ̄1 + Γ12 , Γ2 = Γ̄2 + Γ21 (25)

Kelvin displacement fundamental solutions for regions Ω1 and Ω2 may be
written as:

u∗ij1 =
1

16πμ1 (1− ν) r
[(3ν − 4) δij + r,ir,j ] (26)

u∗ij2 =
1

16πμ2 (1− ν) r
[(3ν − 4) δij + r,ir,j ] (27)
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Figure 3: Problem with two regions.

where

μ1 =
E1

2 (1 + ν)
(28)

μ2 =
E2

2 (1 + ν)
(29)

In such a way, the fundamental solutions may be related as follows:

u∗ij2 =
E1

E2
u∗ij1 (30)

Eqn (30) may be rewritten as:

u∗ij2 = u∗ij1 +
ΔE12

E1
u∗ij2 (31)

where:
ΔEij = Ei − Ej (32)

Kelvin traction fundamental solution may be written as

p∗ij =
−1

8π (1− ν) r2

[
∂r

∂η
[(1− 2ν) δij + 3r,ir,j ] + (1− 2ν) (ηir,j − ηjr,i)

]
(33)

One may observe that eqn (33) do not depend on the elasticity module, than it is
the same for domains Ω1 and Ω2. Thus, Kelvin traction fundamental solution may
be represented as p∗ij for both domains.
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The objective is to obtain a single integral equation which considers both
regions. In order to do that, the first step is to write the Somigliana Identity inte-
grating only the boundary of region Ω1. Maintaining the same source point, the
Somigliana Identity is then again written but now integrating only the boundary of
region Ω2. By adding these two expressions, an initial version of the final equation
is obtained. The next step is to substitute eqn (31) into this initial version and to
develop the expression. This demonstration is detailed by Ribeiro and Paiva [5],
and the final result is[

cij1 +
E2

E1
cij2

]
uj +

∫
Γ̄1

p∗ijujdΓ̄1 +
E2

E1

∫
Γ̄2

p∗ijujdΓ̄2 − ΔE12

E1

∫
Γ21

p∗ijujdΓ21

=
∫
Γ̄1

u∗ij1pjdΓ̄1 +
∫
Γ̄2

u∗ij1pjdΓ̄2

(34)
Variables x and y were omitted in order to reduce the expression. Extending it

to an arbitrary number of domains, it becomes:

{
nd∑
s=1

[
Es
E1

cijs
]}

uj +
ne∑
e=1

[
Ee
E1

∫
Γ̄e

p∗ijujdΓ̄e

]
+

nc∑
c=1

[
ΔEmn

E1

∫
Γmn

p∗ijujdΓmn

]
=

=
ne∑
e=1

[∫
Γ̄e

u∗
ij1pjdΓ̄e

]
(35)

In eqn (35), the total number of domains is nd, the number of contact boundaries
is nc and the number of external boundaries is ne. The first summation represents
the coefficient cij (y) of eqn (1), which contributes in the matrix Δp of eqn (9).
Before calculating it all coefficients cijs, one for each domain, must be known.
More details about this formulation are provided by Ribeiro and Paiva [5].

In Section 2, eqn (1) was used as a starting point to obtain the BEM system
of equations which solution is the unknown boundary values. If the same steps
are repeated for eqn (35), valid for multi-regions, a similar system of equations
is obtained. The unknowns of this new system are the non-prescribed boundary
values plus the interface displacements. The total number of unknowns is reduced
when compared to the classic multi-region technique described in reference [4],
once the interface tractions are not included in this case. This justifies why the
alternative formulation leads to less time processing. A better interface continuity
is also guaranteed, once all regions are modeled as a single solid.

5 Example

This example aims to analyze an infinite non-homogeneous domain problem with
the proposed formulation. The domain considered is composed by two layers of
different elasticity module, as illustrated in fig. 4.

Layer 1 has a 9000 kN
/
m2 elasticity module, a 0.5 Poisson ratio and 15m of

thickness. Layer 2 has a 900 kN
/
m2 elasticity module, a 0.5 Poisson ratio and
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Figure 4: Layered soil problem.

Figure 5: Mesh employed.

infinite thickness. Both layers are infinite in radial directions. A vertical circular 2
kN/m2 uniform loading with a 7.5m diameter is applied at the top layer surface.

This problem was simulated using two identical meshes, one for the surface and
another for the contact between layers, totalizing 242 nodes, 448 BEs and 64 IBEs.
The surface mesh may be visualized in fig. 5, in which the polygon outlined in the
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Table 1: Vertical displacement
(
m× 10−3

)
.

Number of nodes No IBEs used Error (%) Mesh with IBEs Error (%)

Analytical 2.5000 ————- 2.5000 ————-

242 2.0874 16.5 2.5123 0.5

274 2.3865 4.5 2.5209 0.8

306 2.5033 0.1 2.5212 0.8

338 2.5207 0.8 2.5213 0.9

center corresponds to the loaded area, the dashed lines represent the IBEs and the
rest of the mesh is composed of BEs. The points marked at the perimeter of the BE
mesh receive all the influence of the IBEs.

Using the values adopted in this example and applying the analytical solution
given by Burmister [12], a 2.5000× 10−3 m vertical displacement is obtained for
the central point of the circle. Simulating this problem with the mesh of fig. 5, a
vertical displacement of 2.5123 × 10−3 m was obtained. This value agrees with
the analytical solution, with an error of 0.5%. In order to evaluate the influence of
the IBEs, the example was simulated with the same BE mesh but without the IBEs.
A displacement of 2.0874 × 10−3 m was then obtained, with the higher error of
16.5% relative to the analytical value.

In order to improve this precision more BEs and degrees of freedom were added
at the mesh limits. In this way, the values in table 1 were obtained.

As may be observed, 306 nodes were needed for the BE mesh to overcome the
precision of the 242 node mesh with IBEs. Comparing these two values it may be
concluded that, in this example, to maintain the error below 0.5%, the use of IBEs
allows a mesh reduction of 21%.

6 Conclusions

In this paper, an alternative multi-region BE technique was combined with a
IBE formulation in order to obtain an efficient numerical tool for layered soil
simulation. Electing one domain as a reference and establishing relations between
its displacement fundamental solution and the ones of the other regions allows
integrating all domains as a single solid. This approach eliminates the need of
equilibrium and compatibility relations between the different media. Therefore,
better results may be obtained in less processing time.

The IBEs employed have the advantage of not increasing the original number
of degrees of freedom, as demonstrated in the example presented. The results
obtained with the IBEs showed good agreement with an analytical solution, and
the use of IBEs promoted a mesh reduction of 21%.
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