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Abstract

Numerous approaches to the implementation of Meshless methods have been
developed and described over the last several years for a wide range of
physical applications. Despite this wide range of applications and implementation
approaches, few attempts have been made to combine the various schemes
utilized throughout the Meshless research community in the hopes of achieving
a more resilient and accurate Meshless method. This paper describes such a
generalized Meshless approach that incorporates moving least squares, radial
basis functions, and finite differencing into a unique Meshless-based solution
framework. The development of this approach was stimulated by stability
requirements that arise in the difficult geometries that appear in typical biological
flow modeling applications. Therefore, this new approach is described in the
context of tracheobronchial flow modeling for the prediction of thoracic tumor
movement throughout the breathing cycle.
Keywords: meshless methods, generalized finite differencing, porous lung flow.

1 Introduction

The medical community is currently giving much attention to the idea of
individualized medical treatment. Individualized treatment means that medication,
surgery, and other procedures are selected based on the specific details of each
patient, rather than through a more general disease based protocol. This process
allows the use of drugs and treatments that may be harmful to some patients to
be utilized successfully on those patients that have conditions and circumstances
ideally suited to the treatment. The area of cancer treatment has been following
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this trend for some time, as size and anatomy can vary significantly from
patient to patient. In conformal and intensity modulated radiation therapy for
example, the exact details of the individual patient anatomy are absolutely critical
to successful treatment outcomes. This is especially important for cancers in
anatomic regions that experience motion due to breathing, such as the lungs,
chest, and abdomen. Therefore much effort has recently gone into the area of
real-time (4D) medical imaging. These advanced imaging techniques have made
it possible to quantify expected tumor motions throughout the breathing cycle
and have provided confidence that radiation is being delivered to the correct
cancer site. Despite these improved imaging capabilities, there is currently no
process available to visualize tumor motion during the actual course of radiation
treatment. Therefore, the medical staff must rely upon previously obtained images
to predict the motion during the actual treatment procedure. This research aims
to improve these prediction capabilities by correlating real-time airflow data
with the lung/tumor motion. A standard spirometer can be used to monitor the
patient’s breathing rate and computational fluid dynamics and mechanics data are
used to predict the resulting lung deformations, thereby providing an improved
means of estimating the current tumor position. In addition, the imaging data
and computational models can be used to improve the accuracy of lung tissue
property estimations so that patient treatment and tissue complications can be more
accurately assessed.

This paper will introduce a new generalized Meshless computational modeling
approach, describe its application to the area of tracheobronchial flow modeling,
and discuss the preliminary findings of the research. The computational modeling
has been carried out using a Meshless-based approach for both flow and elasticity
analysis. Meshless methods offer an extremely increased ease of use for biological
applications as individual patient anatomies are quite complex and therefore very
difficult to represent with typical finite element or finite volume meshes. However,
as with any automatically discretized technique, solution stability and robustness
are extremely key factors to the methodology and therefore have been key aspects
in guiding this research.

In order to present this research in the most suitable fashion, this paper
is organized into several sections, which are then followed by some overall
concluding remarks. In the first section, we will present a more complete
description of the research goals, tasks, and approach. This section will describe
the entire solution procedure and coupling process as it is not tied specifically to
Meshless methods, therefore the ideas and approaches utilized within this work
can be understood by those without experience in the field of Meshless method
modeling. Following this application overview, a section describing the pertinent
details of our new generalized Meshless technique will be presented along with
numerous references to more detailed Meshless method publications. Finally,
results will be presented to demonstrate the current progress that has been made
in individualized patient tracheobronchial airflow modeling for cancer treatment
applications.
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2 Tracheobronchial airflow modeling

Despite large reductions in smoking habits and decreased use of harmful building
materials and chemicals, lung cancer is still the second most common type of
cancer in the United States. While radiation therapy has made huge strides in
offering curative treatments for many types of cancer, its use in treating lung cancer
is particularly difficult due to motion of the tumor that is induced by normal patient
breathing. Due to the length of the treatment and the relative weakness of many of
the lung cancer patients, simply restricting or reducing breathing during treatment
is not a viable means of reducing tumor motion (radiation treatment is typically
delivered in 5-15 minute doses over multiple consecutive days). Additionally,
the motion patterns of many lung tumors can vary unpredictably from day-to-
day [1, 2], the depth of breathing can change even in short amounts of time,
and there are notable individual differences in breathing and motion patterns
from one patient to another. These difficulties complicate treatment and since
providing adequate radiation dose to the tumor is the primary goal of radiation
therapy, treatment fields are often enlarged to accommodate for these motions and
uncertainties. This results in higher doses to normal tissue, thereby increasing the
toxicity rates from therapy. Through advanced medical imaging it has been found
that lung tumors can move as much as 3 cm while the average tumor size in patients
is only 5.5 ± 3.1 cm [1], therefore this practice of field enlargement can easily
lead to over 50% increases in the field size, much of which would be unnecessary
if a more confidence could be assured in the precise tumor position and motion
patterns. It is precisely the goal of this research to address this need.

The goal of this research, improving tumor motion predictions, has been used
to guide the development of an appropriate physical model of the tracheobronchial
system. Keeping this overall goal in mind has allowed for several assumptions to be
made regarding the model physics, without any significant depreciation of overall
motion prediction capabilities. First, the oral cavity and mouth have been removed
from the flow models and the system inlet begins directly after the larynx. This
assumption is justified by noting that the oral cavity flow cross sections are much
larger than those within the trachea, therefore the pressure drop from the mouth
to the start of the trachea will be insignificant when compared to the overall flow
through the trachea. Our second physical simplification is to model the lung as
a continuous porous medium with variable, patient specific, material properties.
This approach has been used with success by previous investors for airflow
modeling within lungs [3]. Our third and final simplification involves both physics
and geometric assumptions. Since the trachea branches into smaller passageways
numerous times before and within the lung, some decision must be made regrading
where to separate the trachea from the lung itself. There are several trade-offs that
must be investigated when making this decision, since as more levels are included:
the flow passageways become increasing small so that eventually the continuum
flow model assumptions will break down, the number of interfaces between the
lung and trachea models increases, extracting the passageways from the medical
images becomes more difficult, and consistency between the model and real

Boundary Elements and Other Mesh Reduction Methods XXXII  147

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press



patient is improved. We have found that the positive effect of increasing the
number of branching levels on consistency is quickly degraded by the loss of
geometric accuracy in obtaining the flow geometry from the medical images.
Therefore, we have limited the branching to only the first two levels, as shown
schematically in Figure 1.

Figure 1: Coupling of the trachea and lung models.

Now that the major assumptions have been stated, we can begin to detail the
overall process of modeling the tracheobronchial flow system. Mass flow rate
and pressure data at the mouth, as well as computed tomography (CT) images
are obtained for each patient during normal breathing. The CT images are then
processed to obtain the flow geometries needed for computational modeling. The
trachea is separated from the lungs at the second level of bifurcation so that
two separate physical geometries are obtained. A Meshless incompressible flow
modeling routine is then used to predict the airflow through the trachea over a
normal breathing cycle, where the inlet conditions are obtained from the measured
data. The outlets of the trachea flow model are connected to the lung model and
provide the link between the lung and trachea flow fields. The incompressible flow
modeling is carried out by solving the Navier-Stokes equations using the approach
previously as described by Kassab and Divo [4].

The lungs are modeled as poro-elastic media, where the flow field satisfies
Darcy’s Law and the elasticity field is solved using Navier’s equation:
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where −→u is the tissue deformation, ν is the constant tissue Poisson ratio, μf is the
constant air viscosity, and p is the pore pressure. The tissue properties in the above
equations, porosity, φ, permeability, κ, and shear modulus, G, are considered
non-homogeneous as they can vary considerably throughout an individual’s lung.
The distribution of these properties for each patient are provided by a novel
image processing technique as described by Santhanam et al. [2]. The overall
coupling process is further illustrated using a simple 2D sketch in Figure 1. It
should be noted that Eqn. (2) is given in steady-state form, while Eqn. (1) is
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transient. This is done as this is the approach utilized herein, as it is assumed
that the lung deformation occurs at a much faster rate than the flow field changes
within the porous lung tissue. Therefore, each time-step of the overall solution
procedure requires the solution of the steady-state Navier equation, but much of the
computational expense of this procedure is reduced since each time-step involves
only a slight change in the deformation field solution.

3 Meshless modeling technique

The merits and benefits of Meshless Method solution approaches are well
described in the literature, where it is generally noted that a reduction in
the dependence of solution quality on the discretization is the most important
achievement. Since this work relies on medical imaging data to provide the model
geometries, it is difficult to guarantee that a smooth, clean geometry is obtained.
This difficulty quickly leads one to assume that Meshless Methods are an excellent
choice for use in this field of research, however, we have found that this is only
true for certain formulations of Meshless Methods (the name Meshless Methods
extends to include several distinct types of techniques). Furthermore, due to these
geometric difficulties we have found that method robustness and stability are
the key factors rather than accuracy in this field of numerical modeling. We
have therefore adopted several different techniques, which are typically found
within various Meshless Method approaches but rarely combined, into a single
unified Meshless Method for the flow field modeling in this work. Specifically,
this work utilizes radial basis function (RBF) interpolation, moving-least-squares
(MLS) approximation, as well as finite differencing to create robust and efficient
numerical solution schemes for both incompressible and poroelastic flows. Each of
these techniques is applied in a localized manner to decrease computational effort
and ensure the highest possible efficiency in the method. Some pertinent details
regarding various Meshless-based methods as well each of the schemes mentioned
are given in the remainder of this section, followed by an overview of how the
various schemes are brought together to form a unified flow solution technique.

Typical Meshless Methods begin by assuming that any desired field, φ, can be
locally approximated by multiplying a set of basis functions,χ, by a corresponding
set of expansion coefficients, α, as:

φ (x) =
NF∑
j=1

αjχj (x) (3)

where NF is a number of local expansion points (support domain) and x refers to
any number of coordinate directions. A critical component of these local Meshless
techniques is the determination of a suitable set of basis functions that will
accurately represent the field between the data points and provide appropriate
estimations of the required field derivatives to facilitate the solution of the
governing equation at hand. Many researchers, including the authors [4–7], have
investigated this issue and several conclusions can be drawn from these previous
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works. For RBF methods, the Inverse Hardy Multiquadric [8] has repeatedly
been noted as the best choice with regards to both stability and accuracy, while
for MLS methods, standard monomial terms up to second order are typically
found sufficient for most applications. Further details of these two approximation
schemes are continued below.

Radial Basis Function interpolation has been the foundation of most Meshless
Method formulations since the developments of Kansa over 20 years ago [9, 10].
Since those works, much more attention has been given to the specific details of the
RBF schemes resulting in much gains in accuracy and stability of the techniques.
Many researchers have reported such improved results by augmenting the RBFs
with additional functions that are chosen specifically for the application at hand.
Such augmentations are accomplished by updating the field approximation as:

φ (x) =

NF∑
j=1

αjχj (x) +

NP∑
k=1

α(k+NF )Pk (x) (4)

wherePk(x) refers to any desired set of basis functions and NP refers to the
number of extra basis functions used. Kassab and Divo [4], showed the importance
of including constant and linear monomial terms, and Sarlar et al. [11] found
much benefit to adding hyperbolic functions when solving heat transfer and other
diffusion like equations. Despite the improvements gained by addition of these
extra basis functions, much of the accuracy of the RBF techniques still depend
heavily on the selection of a suitable “free parameter” that appears in the Hardy
Multiquadric as:

χ(xi) =
1√

rj (xi)
2 + c2

(5)

where xi is the point at which the field is being estimated, rj is the Euclidean
distance from xi to point a point xj within the local influence zone, and c is the
free parameter. Earlier works by the authors [4, 12] have presented the details of a
method to optimize the value of this free parameter for each and every interpolation
point in the field. This optimization has proven to provide a very reliable and
accurate RBF interpolation scheme when using the Hardy Multiquadric RBF.
Once the basis functions have been selected, the task of converting any desired
partial differential equation into an algebraic expression becomes quite straight-
forward, as each necessary differential operator may be applied directly to the
basis functions and the resulting approximation equation may be solved by any
standard type of explicit or implicit solution scheme.

Despite the excellent performance of RBF Meshless Methods and the relative
ease of their implementation in many problems and application areas, they still
suffer from three key deficiencies: convective derivatives are difficult to capture
due to the radial symmetry of the RBFs; areas of locally Cartesian structure reduce
to nearly the same results as standard finite differencing, but much more effort is
expended in computing the required RBF weights; high gradient regions, such
as shocks and boundary layers, can cause oscillations in the RBF interpolator,
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resulting in poor numerical instability. Therefore, other approximation schemes
are necessary in some cases to alleviate these concerns.

Moving Least Squares approximations have gained a lot of attention in Meshless
Methods in the area of global Meshless formulations [13–15], but have not seen
much application in the area of localized approaches. However, our experience
has found that MLS formulations provide much more stability when compared
to RBF schemes, since much lower order approximation functions are utilized.
Throughout our work we have found that quadratic MLS approximations are
sufficiently accurate and very stable for a wide variety of application domains.
For three-dimensional modeling, a quadratic MLS requires the following ten
monomial terms:

χ(x) =
{

1 x y z xy yz zx x2 y2 z2
}

(6)

It should be noted that since the MLS approximations in this work are
applied only over a small influence domain and are fully independent from
the approximations in other domains, additional weighting functions are not
needed. Also, it should be noted when using MLS approximations the local
support domain must be much larger than that of typical RBF interpolations,
and our implementations have been found most promising when it is ensured
that at least 20 points with a minimum of four unique values in each coordinate
direction are included (in other words, the support domain nodes must lie in at
least 4 distinct planes when viewed from each coordinate direction). The typical
disadvantage of MLS schemes comes from the fact that they are approximating
and not interpolating functions, therefore applying boundary conditions can be
a very complex process. However, we have found that by combining the MLS
approximation approach into a generalized finite differencing-like scheme, coined
Virtual Finite Differencing in our previous work [12, 16], the application of both
Dirichlet and Neumann type boundary conditions is straight-forward and obvious.

The above descriptions have been presented only with minor details as they
are each well described in other works, however, what does not seem to have
been undertaken by those working in the field of Meshless Methods is the
combination of these techniques within a single computational implementation.
Such a combination has been a major focal point of this research as the
complex geometries present require much more stability than many other types of
applications. We have attempted to optimize this combination through a rigorous
testing and validation process.

Our recent works [16, 17] have shown that maintaining a Cartesian nodal
structure throughout as much of the volume of the computational domain as
possible allows classic finite differencing to be used in much of the domain
(note that this is exactly equivalent to RBF Meshless methods for a 7-noded
influence region as shown in previous works [12]), which significantly increases
the computational efficiency. This approach of maintaining Cartesian nodal
distributions has therefore been adopted in this work as well. This leaves only the
boundary, near-boundary, and those interior regions where different discretization
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sizes come together where truly “Meshless” Methods must be used. For these
interior nodes a nearly Cartesian structure still exists, which provides high
quality local influence domains and allows RBF interpolation to be used without
reservation. For the near boundary regions, the MLS Virtual Finite Differencing
(MLS FD) approach is utilized, as stability is the major concern in this area.
For the boundary itself, a combination approach exists. RBF interpolations are
used directly on the boundary surface for the application of tangential boundary
conditions, such as the traction conditions in elasticity applications. The MLS
FD approach is then used for the normal direction boundary conditions or a
pure finite difference is used when so-called “shadow nodes” are included in the
computational domain (a thorough discussion of shadow nodes has been provided
by the authors in several previous works [4,12]). Lastly, when boundary derivative
approximations are needed, but are not the applied boundary conditions (for
example when computing the dilatation on the boundary in fluid applications)
standard differentiation of the MLS approximating functions are utilized. The
combination of schemes has been found to significantly improve the numerical
stability of our Meshless Methods and further reduce the dependence of the
solution on the quality of the underlying nodal distribution. It should be noted
however, that as with any computational modeling scheme, accuracy is still a
function of the local nodal spacing, therefore our implementations all include some
type of automatic, solution based nodal refinement strategy, so that accuracy and
“discretization convergence” is achieved for all our solutions.

4 Current results

The overall solution approach to tracheobronchial flow modeling utilized in
this work has been verified for simulated two-dimensional configurations in our
previous work [18]. These verifications provided some confidence to the soundness
of the coupling schemes and the ability of the Meshless methods to capture
the necessary flow physics. The extension to 3D and application to real patient
lung geometries necessitated the solution approach updates outlined above. The
approach is now capable of predicting lung tissue deformations for real patients
and is currently undergoing verification in the clinic for real cancer patients.

Figure 2: Example patient lung deformation results throughout breathing cycle
(sized according to deformation and colored by deformation magnitude).
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The lung deformation fields throughout time are shown below for one particular
patient. Figure 2 shows the entire right lung and Figure 3 tracks the deformation
history for a single point on the outer lung surface. An image reconstruction
process is currently being completed that will allow the comparison of these
deformation fields with the real patient lung motions obtained from time dependent
(4D) CT scans. This process will enable the elasticity field boundary conditions to
be properly varied with deformation, so that the computational models can more
accurately match the real patient lung deformations. This next phase of research is
currently underway for several patients.

Figure 3: Relative displacement of a landmark point on the outer lung surface
throughout the breathing cycle.

5 Conclusions

We have presented a new generalized Meshless Method approach that allows
the tailoring of a Meshless method to achieve the most important goals for any
application by selecting schemes with the most desirable properties for each
different type of circumstance that is encountered within the solution process.
It is suggested that: finite differencing be applied to the bulk of the interior to
save effort on the pre-processing stages; RBF interpolation be applied along the
boundary surfaces and within the volume for areas with suitable quality nodal
discretizations; and the MLS approximations be used for near-boundary derivative
estimations and for the application of generalized finite differencing in low quality
distribution regions. Furthermore, it is our recommendation from this research that
others explore such generalized approaches to improve other Meshless techniques
in any areas of concern as well.
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