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Abstract 

The paper deals with derivation of a system of singular integral equations for 
slightly heterogeneous media. The system is derived in terms of complex 
potentials by introducing a small parameter by the perturbation method. The 
resulting system of integral equations is of the Cauchy type with the correction 
terms that address inhomogeneity of the media, they are presented in the form 
somewhat similar to the problem with body forces. Therefore the numerical 
methods developed for the homogeneous crack problems can directly be applied 
for the further numerical analysis. 
Keywords:  heterogeneous media, plane elasticity, singular integral equations. 

1 Introduction 

Elastic properties of many natural and artificial materials have slight 
fluctuations. They can be produced during formation of a material (e.g., metal 
sheets or concrete consolidation), loading history (rocks) or non-homogeneity of 
structure (ceramics). They can also be imposed for the sake to improve 
performance of particular materials as in fractionally graded materials, FGM. 
Non-homogeneity is often neglected for the determination of the fracture 
resistance of such materials. However, in some cases the effect induced by 
moduli fluctuations can create significant fluctuations of material fracture 
toughness, which is the case for FGM.  
     It should be noted that by introducing non-homogeneity of the fracture 
toughness one can model influence of stress fluctuations. However this case is 
fully not the fluctuations of material characteristics. They cannot be considered 
to be independent of applied load and therefore the direct superposition of two 
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solutions for homogeneous and stress fluctuations may produce significant 
errors. A number of papers have been published on the problems dealing with 
the crack propagation in heterogeneous materials, e.g. [1–7]. However the case 
of multiple cracks in heterogeneous media has not been addressed properly. The 
aim of this study is to derive integral equations describing equilibrium of a 
system of 2D cracks in a slightly heterogeneous media. The latter means that the 
fluctuations of the elastic moduli is much less that their average values. For 
simplicity, the consideration is restricted to the case of a thin plate with the 
crack, which makes it possible to use the methods of complex variables. 
     The approach is based on the use of complex potentials and the perturbation 
technique. First a general approximate solution for the plane problem is obtained 
by the method developed by Vekua [8, 9]. The form of this solution is somewhat 
similar to the solution presented in [10] for the case of body forces but contains 
two additional terms reflecting inhomogeneity. Then the system of equation is 
derived by the methods based on complex potentials [10] for an arbitrary smooth 
contour. This is a generalisation of the approach used in [7] for a single strait 
crack. 

2 General solution for slightly inhomogeneous media by the 
perturbation method 

2.1 Equations of plane elasticity for inhomogeneous medium in complex 
coordinates 

The complete system of governing equations of 2D theory of elasticity consists 
of differential equilibrium equations (DEE), Hooke’s law, strain-displacement 
relationships (SDR) and compatibility (of deformation) equation. By introducing 
complex coordinates iyxz  and iyxz   and the following differential 

operators  

  fzfzifyfzfzfx

fyifxfzfyifxfz



,

2,2
 (1) 

one can present the governing equations as follows.  
The DEE assume the form 

 PzDz   (2) 

where the stress functions P and D are used instead of the stress components xx, 
xy, yy in Cartesian coordinates 

 xyixxyyDyyxxP  )(
2
1),(

2
1  (3) 

Similarly to the stress function in (3) one can introduce the following strain 
function 

 xyixxyyyyxx  )(
2
1)(

2
1  (4) 
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and the complex displacement vectors 

 yiuxuw   (5) 

where ux and uy are the displacement components and xx, xy, yy are strain 
components in Cartesian coordinates. Then the SDR assume the form 

 wzwzwz  ,2  (6) 

     In 2D the equation expressing compatibility of strain components has the 
form 

 02222  zzzzzz  (7) 

     For an isotropic material the Hooke’s law takes the form 

  2, DP  (8) 

where  is the shear modulus and  is a bulk modulus; for heterogeneous media 
they are spatial functions of coordinates.  
     The Lame equations (in terms of displacements) can be obtained by 
substitution of (8) into (2) followed by replacement of the strain functions via the 
SDR in the form (6). This gives 

     04)(  wzzwzwzz  (9) 

     If the problem is formulated in terms of stresses alone, then the complete 
system consists of the DEE (2) and the compatibility equation that is obtained by 
replacing the stain functions in (7) via the stress functions via the Hooke’s law 
(8). In this case (7) assumes the form 

 02224 









D

zz
D

zz
P

zz  (10) 

     It is also possible to express the stress functions via the Airy’s function and 
substitute it to (7), which results in a single governing equation.  
     It is evident that for homogeneous media (K=K0, =0) the Lame equations 
take the form 

 02
0

2  wzzwzz  (11) 

where 0=3-40 for plane strain and  0=(3-0)(1+0)
-1 for plane stress and 0 is 

homogeneous Poisson’s ratio.  
     At the same time it is evident that both functions P and  are harmonic, i.e 
they satisfy he Laplace equation

 0202  Pzzzz  (12) 

     while the functions D and  are bi-holomorphic, i.e. their second derivatives 
with respect to the conjugated variable vanish 

 02,02  Dzzzz  (13) 

     For heterogeneous media relationships (12) and (13) are not valid. 
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2.2  Approximation for a medium with fluctuating Young’s modulus 

We further consider the case when the Poisson’s ratio is constant, 0, therefore 
the following ratio is also constant 

 10
4





 (14) 

     Therefore the Young modulus, E, is the only deformation characteristic that 
varies in space. It is assumed that these variations are much less than the average 
value of the Young modulus, E0=<E>, over the domain considered.  
     Let us present the Young modulus as follows 

 EEE  0  (15) 

Here the variations are designated as E which is a known continuous function 
with respect to both variables and possessing the following property 

 0EE   (16) 

where ||…|| stands for a norm; in particular, the norm can be defined as a global 
maximum of the function over the entire domain. Inequality (12) allows one to 
introduce a small parameter  as follows  

 1
0max  EE  (17) 

Hence (10) can be rewritten in the form 

 )1(0 eEE   (18) 

where  1e and 0<<<1. 

     Substitution of (14) and (18) into (9) results in the following equation 

      0)10()(2
0

2  wzezwzwzezwzzwzz  (19) 

     Let us further seek solution for w and for all other stress and strain functions 
in the form 

  2
2

10 QQQQ  (20) 

where Q can be w, P, D, , or .
     By substituting (20) into (19) one obtains the following recurrent process for 
solving the governing equation by successive approximations 

 
,2,1,1

2
0

2

00
2

00
2





jjFjwzzjwzz

wzzwzz
 (21) 

where the right hand side in the second equations in (21) has the form 

    jwzezjwzjwzezjF  )10()(  (22) 

     It is known from the solution at the previous iteration. 
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     It is evident that general solution from the zero iteration coincides with the 
general solution for homogeneous media presented by the Kolosov-
Muskhelishvili formulae [10] 

 000,000,0000002   zDPzw  (24) 

Here 0=0(z), 0=0(z) are holomorphic functions inside the domain 
considered and the modulus 0 is given by (14).  

2.2.1 First approximation 
Let us find the first approximation for Q. First let us specified the right hand side 
of the second equation in (21) by substituting expression from (24) 

     00)10(0 eDzePzF   (25) 

     Integration of the second equation in (21) can be obtained on the basis of the 
Pompeiu’s formula [8], which has been derived for solving the non-
homogeneous Cauchy- Riemann system. In the complex variables this system 
can be written by a single equation of the form 

 fwz   (26) 

     Solution of (24) is given by the following formula 

 iyxzidd
z

f
TfTfw 








  ,,

),(1
,  (27) 

where =(z) is an arbitrary holomorphic function in the considered domain 
This representation contains the operator Tf expressed by the double integral 
over the domain. However, formal integration of the second equation in (26) 
employs indefinite integrals with respect to independent variables z  which gives  

  zdzzfw ),(  (26) 

     Vekua [8] has demonstrated equivalence of both this presentations for 
analytical functions of two variables which can be expanded into power series 
with respect to these variables. This is a wide class of functions that covers many 
applications, therefore we further use indefinite integration. In the general case 
indefinite these integrals should be replaced by double integrals as in (25). 
     The general solution for w1 can be presented as the sum of the general 
solution of the homogeneous equation, which has the form similar to that in (24) 
and a partial solution  zzWW , of the non-homogeneous equation.  

 Wzw  1110102  (27) 

where new holomorphic functions 1=1(z), 1=1(z) have been introduced 
     After substitution of (27) into the left hand side on the second the function W 
can be expressed in the following form 

     dzFGdzGGW 00,000)12
0(  (28) 
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     At the same time the stress functions presume the form 

 YzDXP  111,111  (29) 

     Due to equilibrium the stress the functions X and Y are related to each other as 

 YzXz    (30)  

     They can also be expressed through the function W as follows 

    WzeDYWzWzePX  0,1100  (31) 

Now by introducing new holomorphic functions  

 10,10   (32) 

     one can represent the first approximation of the general solution in the form 

 YzDXPWzw  ,,002  (33) 

     Formulae (33) can be considered as a generalization of the Kolosov formulae 
to the case of slightly non-homogeneous medium [10]. The obtained formulas 
are similar to the solution for homogeneous media with body forces. They would 
coincide if the first terms in both expressions (31) were omitted 

3 Singular integral equations for crack problems 

3.1 Reduction to the singular integral equation 

Let us determine boundary values of the involved functions. Since on the 
boundary of a domain the complex variables are not independent, this makes it 
possible to consider the boundary value of the function as a function of a single 
variable  

       


 tzzf
tz

ttftf ,,lim,  (34) 

Here  is the boundary of the domain, which can be considered as a union of 
open contours in the entire complex plane. For simplicity all the contours are 
assumed to be smooth, i.e. the do not contain any corner points. 
     The derivative of a complex valued function along the contour with respect to 
the complex coordinate t has the form 

  ttztzfz
ietztzfztf ,,

2
,)(  (35) 

where is (t) the angle between the positive direction of tangent to the contour 
and the positive direction of the real axis. 
     Let us also introduce an operator  that being placed before any function f, 
denote a jump of this function across the contour  

       tftftf   (36) 

where index “” corresponds to the boundary values of the function on the 
upper/lower surface of .  
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     For the derivative of the complex displacements one finds 

 ),())(2)(()()10()(02 tWtDietPttw   (37) 

     Since the term in parentheses in the right hand side of (36) represent the 
complex vector of the applied load, N+iT, one can present the boundary value of 
the complex potential ’(t) in the form 

  ttWtiTtNtwt ),()()()(02)()10(  (38) 

     In crack problems it is often accepted that the stress vector is continuous 
across the boundary, therefore (N+iT)=0. Bearing in mind this simplification 
and applying operator  to the both parts of (38) one finds the following 
expression for the jump of the sought complex potential
  ttWtwt ),()(02)()10(  (39) 

     Then the potential can be found via the Cauchy integral 

 






 dt

zt

t

i
z

)(

2

1
)(  (40) 

where the unknown density (t) has the form 

 
10

)()(02
)(





tWtw

t  (41) 

     It is evident that the expression (40) is the same as for homogeneous problem 
while the density contains an additional term, which is proportional to the jump 
of derivative of the particular solution W that is known as soon as the solution of 
the problem for homogeneous case is known.  
     Once the function  is known, the stress function P can be expressed in the 
form 

 Xdt
zt

ttie
i

dt
zt

t

i
P 













 

)()(2
2

1)(

2

1
 (42) 

     Stress function D can be determined by the following way. It follows from the 
DEE that it can be sought in the form 

 Ydt
zt

tzt

i
D 

 





  2)(

)()(

2

1
 (43) 

where =(z) is an arbitrary holomorphic function. To find this function one 
needs to substitute (42) and (43) into the expression for the jump of the stress 
vector on .  Since it has been assumed that this jump is zero, by the Sokhotski-
Plemelj formulae, [10], one should equate all non-integral terms to zero, which 
immediately fives the following expression for the jump of the holomorphic 
function, as follows 

   YXQtQtt  ),()()(   (44)  
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     Then the holomorphic function (z) is determined by its jump, which 
eventually leads to the following expression for the stress function D     

 Ydt
zt

tzt

i
dt

zt

tQt

i
D 

 











  2)(

)()(

2

1)()(

2

1
 (45) 

     As soon as the expressions for the stress functions via the unknown density 
(t) are found one can derive a singular integral equation (SIE) of the considered 
problem by assuming that the stress vector is known on . The final expression 
for the SIE can be written in the form 

 
























































,
2)(

)()()()(

2

)(2

)()(2)(

2

1

QiTNdt
t

tt

t

tQt

i

ie

dt
t

ttie
t

t

i

 (46) 

     The last term in the right hand side of (46) is known from the solution of the 
similar SIE for homogeneous domain in which it is necessary assume W=0 and 
X=Y=0. For a system of cracks SIE (46) can be transformed to a system of SIE, 
see [7] for detail. 
     It should be noted that in order to possess a unique solution the system (46) 
has to be complemented by the condition of single-valuedness of the 
displacements. This condition depends on the problem considered, for the case of 
n non-intersecting cracks there should be specified n additional conditions 
imposed in the sought function, which is similar to homogeneous case, see 
details in [11]. 

3.2 Particular case of a straight crack 

In the case of a straight crack located on the interval (-1,1) of the real axis the 
SIE assumes simple form  

   1),()()(

1

1

)(1






  xxSxiTxNdt
xt

t

i
 (47) 

where the function S(t) has been introduced as follows 

        












1

1
2

1

2
dt

xt

tQ

i

xQ
xQxS  (48)  

     The condition of single valuedness assume the form 

    0

1

1

)()(10 



 dttQt  (49) 
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     The solution of this problem is obtained by perturbations, see [7] for detail. It 
has the form 

       





















  CdxxSxiTxN

tx

x

t

i
t

1

1

21

21
)(  (50) 

     An arbitrary constant C should be determined from the condition of single-
valuedness of the displacements which  
     It should be noted that functions Q(t), Q(t) and S(x) in (47)-(50) remain 
unknown until the problem for the homogeneous medium is solved. This 
solution has the form 

     dxxiTxN
tx

x

t

i
t 










1

1

21

21
)(0  (51) 

     Here the function (t) is decomposed into the sum 

 )(1)(0)( ttt   (52) 

where 0(t)=20(1+0)w0(t) represents a solution for the homogeneous plate  
     Now the function Q(t) can be evaluated by substitution of the complex 
potential with zero sub-index in the corresponding formulae to determination of 
W, X, Y, Q and S. Their explicit forms are not written here because of 
awkwardness.  
     By applying the perturbation method with the account for (52), the solution 
for 1(t) yields the form similar to (50) where the constant C is to be determined 
from the condition (49) . This results in 

   0

1

1
10









  dttQ
i

C  (53) 

     Formulae (51)-(53) present the complete solution to the problem for the 
straight crack in slightly non-homogeneous plate.   

4 Conclusions 

The present paper presents a system of SIE for curvilinear non-intersecting 
cracks in slightly non-homogeneous media in the form (46). It can be solved 
analytically for some simple particular cases of straight or circular cracks. For 
curvilinear cracks or for a system of n cracks the solution can be found by any 
numerical procedure associated with solving a system of SIE, in particular by the 
methods of mechanical quadratures [11]. 
     The obtained system can be used for analysis of the characteristics related to 
the fracture of heterogeneous materials and in particular to investigation of the 
fracture propagation in FGM. 
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