
 

Boundary element solution of thermal creeping 
flow in a nano single mixer 

C. Nieto1, H. Power2
 & M. Giraldo1 

1Universidad Pontificia Bolivariana, Grupo de Energía y 
Termodinámica, Facultad de Ingeniería Mecánica, Colombia 
2Faculty of Engineering, Department of Mechanical, Materials and 
Manufacturing Engineering, The University of Nottingham, UK 

Abstract 

In order to employ continuum models in the analysis of the flow behaviour of a 
viscous Newtonian fluid in micro scale devices, it is necessary to consider at  
the wall surfaces appropriate slip boundary conditions instead of the classical 
non-slip condition. The slip behaviour in the case of micro fluid flow of rarefied 
gases is associated with the combined effect of reduction in momentum transfer 
due to the reduction in the number of molecules (shear creep) and the thermal 
creep or transpiration, which as a consequence of inequalities in temperatures, 
forces the fluid to slide over a surface from colder to hotter regions. In this work 
a boundary integral equation formulation for Stokes slip flow, based on the 
normal and tangential projection of the Green’s integral representational 
formulae for the Stokes velocity field, which directly incorporates into the 
integral equations the local tangential shear rate and heat flux at the wall 
surfaces, is presented. The tangential heat flux is evaluated in terms of the 
tangential gradient of the temperature integral representational formulae 
presenting singularity of the Cauchy type, which are removed by the use of an 
auxiliary field. These formulations are used to simulate a Single rotor mixer and 
analyze the combined effect of both shear and thermal creep effects over mixer 
performance.  
Keywords: linear slip boundary conditions, boundary element method, rotating 
mixers, thermal creep. 
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1 Introduction 

Mixing of reactants in integrated micro fluidic systems is an important issue, due 
to the role played in chemical or biological analysis. A variety of micro mixers 
has been recently developed; Mansur et al. [1] and Hessel et al. [2] present a 
complete review of the use and development of active and passive micro mixers. 
The common conclusion of both reviews relies in the lower mixing rate present 
in micro mixers, because of the dominant viscous laminar flow conducing to 
slowly mixing rates. Different mechanisms and configurations have been 
implemented to achieve better mixing conditions, but the majority employ active 
mixers regardless of the simple fabrication technology and the easy 
implementation of passive mixers. Examples of active mixers include the swirl 
micro mixer [3], oscillating flat plate stirrer [4] and vortex pump mixer [5], while 
for passive mixers it is possible to find simpler versions, such as the Y and T-
type flow [6] and more complex ones, such as chaotic micro mixers [7]. Active 
mixers could employ different stirrer shapes (concentric or eccentric symmetric 
and asymmetric rotors) to generate secondary flow, swirling flow and vortices, 
which enhance mixing performance [1]. 
     When geometry devices are scaled down, the surface-to-volume ratio 
increases dramatically so that the surface related phenomena become 
increasingly dominant, e.g. micro heat exchangers and micro mixers present 
higher heat and mass transfer rates than macro systems of equal capacity [3]. 
Some new features emerge when mechanical structures are sufficiently small, 
and it becomes important to understand the various types of interactions that 
arise between the fluid flow constituents and the solid surfaces that contain them. 
For instance, a phenomenon known as the slip flow regime could emerges as the 
consequence of an insufficient number of molecules in the sampling region [8] 
or hydrophilic and hydrophobic recovering quality of surfaces in contact with 
fluids [9]. Neto et al. [10], in a review article, highlight the need of properly 
describing the flow near the fluid-solid interfaces, because of its relevance to a 
wide range of applications, from lubrication to micro fluidics.  
     In the case of micro fluid flow of rarefied gases, the thermal creep or 
transpiration also appears as a consequence of inequalities in temperatures, 
which forces the fluid to slide over a surface from colder to hotter regions [11]. 
Rarefied gas flows are generally associated with low-density conditions, such as 
high-altitude and vacuum. However, the small length scales commonly 
encountered in micro fluid flows imply that rarefaction effects will be important 
at much higher pressures, for more details see [12]. 
     Taking into account the advantages of the BIMs for the numerical simulation 
of micro fluid flow under the slip condition, this work presents a numerical 
approach based on the use of the normal and tangential projections of the 
velocity integral representation formula for Stokes flows, resulting in weakly 
singular mixed system of integral equations of the first and second kinds for the 
normal and tangential components of the surface traction. The proposed 
approach is used to study flows in a Single rotor mixer (see Figure 1) under 
linear slip conditions with the thermal jump effect at the surface. The 
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development of these formulations permits the inclusion of linear slip conditions 
into the boundary integral expressions directly, allowing the evaluation of micro 
flow in plane and curved geometries not subjected to symmetry conditions. The 
type of rotor mixer analyzed is of the single-shaft mixer type with an impeller 
rotating in close proximity to a stationary housing. 

2 Governing equations 

Fluid flow in micro scale devices usually happens at a very low Reynolds 
number due to their small characteristic length scale. In these cases, the flow of 
an incompressible Newtonian viscous fluid can be modelled by the Stokes 
system of equations, which states a balance between the pressure and the 
viscous-shear forces. In terms of a characteristic velocity ܷ, a length scale h and 
pressure ߤ ܷ/݄, the Stokes system of equation can be written in dimensionless 
form as:  
 

 
௜ݑ߲

௜ݔ߲
ൌ 0

௜௝ߪ߲

௝ݔ߲
ൌ 0 (1) 

where 

௜௝ߪ  ൌ െߜ݌௜௝ ൅ ቆ
௜ݑ߲

௝ݔ߲
൅

௝ݑ߲

௜ݔ߲
ቇ (2) 

 
  .௜௝ the Kronecker deltaߜ the pressure and ݌ ,ሬԦ being the velocity vectorݑ
     Under these confined flow configurations, appropriate velocity slip conditions 
at the wall surfaces must be prescribed in order to employ continuum models for 
the description of the flow field. The Navier’s slip boundary condition states that 
the relative tangential fluid velocity, ݑ௧

௙, with respect to the tangential wall 
velocity, ௧ܷ

௪, is directly proportional to the tangential projection of the local 
shear rate, ߛሶ௧, as given by equation (3). The proportional constant is called slip 
length, ܮ௦ (dimensionless slip length in our case), and represents the hypothetical 
outward distance at the wall needed to satisfy the no-slip flow condition [12].  
 

 
Figure 1: Single rotor mixer geometry. 
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Besides, when dealing with rarefied gases the effect of thermal creep or 
transpiration needs to be considered, as it relates the tangential fluid velocity 
with the tangential heat flux at the walls. In this way, the complete slip condition 
is described by:  
 

௧ݑ 
௙ െ ௧ܷ

௪ ൌ ሶ௧ߛ௦ܮ ൅  ௦ሻ (3)ݍ௦்ሺെܮ

 
with 
 

ሶ௧ߛ  ൌ ቆ
௜ݑ߲

௝ݔ߲
൅

௝ݑ߲

௜ݔ߲
ቇ ௝݊ݏ௜ ൌ ቆ

௜ݑ߲

߲݊
௜ݏ ൅

௝ݑ߲

ݏ߲ ௝݊ቇ (4) 

where ݊௜ and ݏ௜ are respectively the i components of the normal and tangential 
vectors to a boundary surface and ݍ௦ ൌ െ݇ ߲ܶ ⁄ݏ߲  is the tangential heat flux at 
the boundary contours with ݇ as the thermal conductivity. In the above 
expression, ܮ௦் is a coefficient constant proportional to the product of the 
Reynolds number times the square of the Knudsen number and inversely 
proportional to the Eckert number. 
     For the implementation of this type of slip condition in the velocity integral 
representational formula for Stokes flows, the tangential shear rate at solid-fluid 
interfaces can be evaluated in terms of the surface traction force ݂ҧ, which 
tangential projection can be expressed as: 
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௜ݑ߲

௝ݔ߲
൅

௝ݑ߲

௜ݔ߲
ቇ ௝݊ݏ௜ ൌ  ሶ௧ߛ

(5) 
 

where for consistence with our formulation, the above expression has been 
written in dimensionless form, with a characteristic traction force ߤ ܷ/݄.  
     To complete the boundary conditions at the solid surfaces, the following non-
flux condition across the boundaries needs to be considered:  
 

ሻݔሻ݊௜ሺݔ௜ሺݑ ൌ ܷ௡
௪ሺݔሻ,  at any points x on the boundary surfaces        (6) 

 
where the following integral relation needs to be satisfied, according to the 
conservation of mass for an incompressible fluid:  

 න ܷ௡
௪ሺݔሻ݀ܵ௫ ൌ 0

ௌୀௌ೔೙೟׫ௌ೐ೣ೟

 
(7) 

 

 
with S as the union of the external and internal surfaces, ܵ௘௫௧ and ௜ܵ௡௧, 
respectively. In our case for micro mixers with external stationary housing, 
ܷ௡

௪ሺݔሻ ൌ ௧ܷ
௪ሺݔሻ ൌ 0 at  ݔ א ܵ௘௫௧. 
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3 Boundary integral formulation for slip Stokes flows  

The Stokes velocity field has the following direct integral representation 
formulae for an arbitrary point ݔ in a closed domain Ω filled with a Newtonian 
fluid [13]: 
 

 ܿሺݔሻݑ௜ሺݔሻ െ න ,ݔ௜௝ሺܭ ሻ݀ܵ௬ݕ௝ሺݑሻݕ

ௌ

൅ න ௜ݑ
௝ሺݔ, ሻݕ ௝݂ሺݕሻ݀ܵ௬

ௌ

ൌ 0 (8) 

 
where c is a constant dependent on the position of the source point. For internal 
points ܿ ൌ 1, for point at a smooth boundaries ܿ ൌ 1/2 and for external points 
ܿ ൌ 0.  
     The kernels of the above integral representational formula are the Stokeslet 
and its corresponding surface tractions or Stresslet, which two dimension 
expressions are given by: 
 

௜ݑ 
௝ሺݔ, ሻݕ ൌ െ

1
ߨ4

ቈ݈݊ ൬
1
ݎ

൰ ௜௝ߜ ൅
ሺݔ௜ െ ௝ݔ௜ሻ൫ݕ െ ௝൯ݕ

ଶݎ ቉ 

 

(9a) 

,ݔ௜௝ሺܭ  ሻݕ ൌ െ
1
ߨ

ሺݔ௜ െ ௝ݔ௜ሻ൫ݕ െ ௞ݔ௝൯ሺݕ െ ሻݕ௞ሻ݊௞ሺݕ

ସݎ
(9b) 

ݎ  .i.e ,ݕ and ݔ being the Euclidean distance between point ݎ ൌ ݔ| െ   .|ݕ
     Substituting the above slip condition with consideration of thermal jump, 
equation (3), into the normal and tangential projections of the Stokes velocity 
field, the following system of integral equations for the normal and tangential 
components of the unknown surface traction is found: 
 

 

න ௜ݑ
௝ሺݔ, ሻ൫ݕ ௡݂ሺݕሻ݊௝ሺݕሻ ൅ ௧݂ሺݕሻݏ௝ሺݕሻ൯݊௜ሺݔሻ݀ܵ௬

ௌ

െ න ,ݔ௜௝ሺܭ ሻ݀ܵ௬ݔሻ݊௜ሺݕ௝ሺݏሻݕௌ ௧݂ሺܮሻݕ ൌ  െܿሺݔሻܷ௡
௪

ௌ
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ௌ
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(10) 

 
and 
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(11) 

     The limiting value of the integral kernels in (10) and (11) as the radius r tends 
to zero is given by:  
 

,ݔ௜௝ሺܭ ሻݕ ௝݊ሺݕሻ݊௜ሺݔሻ ൌ െ
ଶݎ

ߨ
ቆ

1
ݎ

ݎ߲
߲݊௬

ቇ
ଶ

൬
1
ݎ

ݎ߲
߲݊௫

൰ ൌ െ
ଶݎ

ߨ
൬

݇ሺݔሻ
2

൰
ଷ

՜ 0 

,ݔ௜௝ሺܭ ሻݔሻ݊௜ሺݕ௝ሺݏሻݕ ൌ ,ݔ௜௝ሺܭ ሻݕ ௝݊ሺݕሻݏ௜ሺݔሻ ൌ െ
ݎ
ߨ

ݎ߲
௫ݏ߲

ቆ
1
ݎ

ݎ߲
߲݊௬

ቇ
ଶ

ൌ െ
ݎ
ߨ

ሺsinሺ ሬ݊Ԧ, Ԧሻሻݎ ൬
݇ሺݔሻ

2
൰

ଶ

՜ 0 

௜ݑ
௝ሺݔ, ሻݕ ௝݊ሺݕሻݏ௜ሺݔሻ ൌ ௜ݑ

௝ሺݔ, ሻݔሻ݊௜ሺݕ௝ሺݏሻݕ ൌ െ
ݎ

ߨ4
ݎ߲

௬ݏ߲
൬

1
ݎ

ݎ߲
߲݊௫

൰

ൌ െ
ݎ

ߨ4
ሺsinሺ ሬ݊Ԧ, Ԧሻሻݎ ൬

݇ሺݔሻ
2

൰ ՜ 0 

௜ݑ
௝ሺݔ, ሻݕ ௝݊ሺݕሻ݊௜ሺݔሻ ൌ െ

1
ߨ4

ቈ݈݊ ൬
1
ݎ

൰ ൅ ଶݎ ቆ
1
ݎ

ݎ߲
߲݊௬

ቇ ൬
1
ݎ

ݎ߲
߲݊௫

൰቉

ൌ െ
1

ߨ4
ቈ݈݊ ൬

1
ݎ

൰ െ ଶݎ ൬
݇ሺݔሻ

2
൰

ଶ

቉ ՜ െ
1

ߨ4
݈݊ ൬

1
ݎ

൰ 

௜ݑ
௝ሺݔ, ሻݔ௜ሺݏሻݕ௝ሺݏሻݕ ൌ െ

1
ߨ4

ቈ݈݊ ൬
1
ݎ

൰ ൅
ݎ߲

௬ݏ߲

ݎ߲
௫ݏ߲

቉ ൌ െ
1

ߨ4
൤݈݊ ൬

1
ݎ

൰ െ cosଶሺݏԦ, Ԧሻ൨ݎ

ൌ െ
1

ߨ4
൤݈݊ ൬

1
ݎ

൰ െ ሺ1 െ cosଶሺ ሬ݊Ԧ, Ԧሻሻ൨ݎ

ൌ െ
1

ߨ4
ቈ݈݊ ൬

1
ݎ

൰ െ 1 ൅ ଶݎ ൬
݇ሺݔሻ

2
൰

ଶ

቉ ՜ െ
1

ߨ4
൬݈݊ ൬

1
ݎ

൰ െ 1൰ 

with only logarithmic singularities on ݑ௜
௝ሺݔ, ሻݕ ௝݊ሺݕሻ݊௜ሺݔሻ and 

௜ݑ
௝ሺݔ,   .ሻݔ௜ሺݏሻݕ௝ሺݏሻݕ

     In the above limiting values, the term ߲߲݊ݎ/ݎ tends to ݇ሺݔሻ/2 as the radius r 
tends to zero, where ݇ሺݔሻ is the curvature at a point x on the boundaries (see 
Courant and Hilbert [14, Vol. 2, page 299]).  
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     To solve equations (10) and (11), it is necessary to know the temperature field 
with the aim of obtaining the temperature gradient in the tangential direction at 
boundary contours. The temperature field is found by solving the energy 
equation, written here in dimensionless form as: 
 

 ܲ݁ ቆ
߲ܶ
ݐ߲

൅ ௝ݑ
߲ܶ
௝ݔ߲

ቇ ൌ
߲ଶܶ
௝ݔ߲

ଶ (12) 

where ܲ݁ ൌ ሺܷଷߤ ⁄݇݃ߩ ሻଵ/ଶ is the Peclet number, which can be expressed in 
terms of the Reynolds number through the Prandtl number as 
ݎܲ ൌ ܲ݁ ܴ݁ ൌ ߤ ⁄⁄݇ߩ . For cases of ܲݎ ൌ ܱሺ1ሻ, our previous assumption of 
small Reynolds number implies that ܲ݁ ا 1, reducing the above energy 
equation (at the first order of approximation in ܲ݁) to the Laplace equation, i.e. 
quasi-static approximation, the integral representation formula of which is: 

 ܿሺݔሻܶሺݔሻ ൌ න
߲߶ሺݔ, ሻݕ

߲݊
ܶሺݕሻ

ௌ

݀ܵ௬ െ න ߶ሺݔ, ሻݕ
߲ܶሺݕሻ

߲݊
ௌ

݀ܵ௬ (13) 

     The kernels of the above integral representational formula are ߶ሺݎሻ ൌ
െln ሺݎሻ ⁄ߨ2  for the surface single layer potential and ߲߶ሺݔ, ሻݕ ߲݊⁄ ൌ
ሺݔ௜ െ ሻݕ௜ሻ݊௜ሺݕ ⁄ଶݎߨ2 ൌ cos ሺ ሬ݊Ԧ,  ,for the surface double layer potential ݎߨԦሻ/2ݎ
which are weak singular and regular, respectively (see our previous limiting 
values as r tends to zero).  
     In the slip flow region, the temperature field is also subject to a jump 
condition at the boundary contours, [14], given by the radiation condition  

 ܶ௙ െ ܶ௪ ൌ  ௡ሻ (14)ݍሺെ்ܮ

with ݍ௡ ൌ െ݇ ߲ܶ ߲݊⁄  as the normal heat flux to the surface and ்ܮ as a 
coefficient constant function of the Knudsen and Prandtl numbers and the energy 
accommodation coefficient. The above jump condition represents a Robin type 
boundary condition for the temperature field. Substituting equation (14) into the 
integral representational formula for the temperature, equation (13), leads to the 
following boundary integral equation for the unknown normal flux:  

 

ܿሺݔሻ்ܮ
߲ܶሺݔሻ

߲݊
െ න
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߲݊
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ௌ

݀ܵ௬ ൅ න ߶ሺݔ, ሻݕ
߲ܶሺݕሻ

߲݊
ௌ

݀ܵ௬

ൌ െܿሺݔሻܶ௪ሺݔሻ ൅ න
߲߶ሺݔ, ሻݕ

߲݊
ܶ௪ሺݕሻ

ௌ

݀ܵ௬ 

(15) 

     The above integral equation can be solved by a classical BEM procedure; the 
quadratic scheme is the present work. The obtained surface heat flux can be 
substituted into the temperature jump condition (14) to find the corresponding 
fluid temperature at contact with the solid surfaces.  
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     The tangential heat flux at the boundary contours is obtained by taking the 
limiting value of the gradient of the temperature field, at an internal point, 
approaching a boundary point, and then multiplying the resulting expression by 
the surface tangential vector. In this way, the surface gradient of the temperature 
field is given by:  

 ܿሺݔሻ
߲ܶሺݔሻ

௝ݔ߲
ൌ න

߲߶ሺݔ, ሻݕ

௝ݔ߲

߲ܶሺݕሻ

߲݊
ௌ

݀ܵ௬ െ න
߲ଶ߶ሺݔ, ሻݕ

௝߲݊ݔ߲
ܶሺݕሻ

ௌ

݀ܵ௬ (16) 

where the first integral is a singular integral of the Cauchy type and the second a 
hyper singular integral. However, by multiplying the above relation by the 
surface tangential vector, the resulting integral relation for the tangential 
derivative only possesses singularities of the Cauchy type:   

  

                               ܿሺݔሻ
߲ܶሺݔሻ

ݏ߲

ൌ න
߲߶ሺݔ, ሻݕ

ݏ߲
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ௌ
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െ න
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߲݊ݏ߲
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ௌ

݀ܵ௬                                                           (17)  

where the limiting value of the above kernels as the distance r tends to zero is 
given by:  
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     The evaluation of the above integrals needs to be considered in the sense of 
Cauchy principal value. Various regularization methods to reduce the order of 
singularity of this type of integrals are available in the literature; most of them 
are based on expanding the kernel around the singular point and subtraction of 
the most singular part as originally suggested by Mikhlin [16]. A simple 
alternative is to find the integral representational formulae of a known potential 
field, with the same singularity as the field in consideration. Subtraction of both 
integral equations removes the most singular part of the integral operators (for 
more details see [16]). In general, this is not a simple task, but in the present case 
it is possible to define the potential 
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 ෨ܶሺݔሻ  ൌ
߲ܶሺ݌ሻ

௝ݔ߲
൫ݔ௝ െ ሻ௝൯݌ሺݔ ൅ ܶሺ݌ሻ, (18) 

solution of the Laplace equation ׏ଶ ෨ܶ ൌ 0, with values of the constants  ܶሺ݌ሻ and 
߲ܶሺ݌ሻ/߲ݔ௝ equal to the values of the temperature field (13) and its gradient at a 
given evaluation point ݔԦሺ݌ሻ. Therefore, at the evaluation point ݔԦሺ݌ሻ,  ෨ܶሺ݌ሻ ൌ

ܶሺ݌ሻ and 
డ ෨் ሺ௣ሻ

డ௫ೕ
ൌ

డ்ሺ௣ሻ

డ௫ೕ
 . By subtracting the integral representation formula of the 

tangential derivative of both fields, we obtain   
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െ
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ቇ

ൌ න
߲߶ሺݔ, ሻݕ

ݏ߲
ቆ

߲ܶሺݕሻ

߲݊
െ

߲ ෨ܶሺݕሻ

߲݊
ቇ

ௌ

݀ܵ௬

െ න
߲ଶ߶ሺݔ, ሻݕ

߲݊ݏ߲
൫ܶሺݕሻ െ ෨ܶሺݕሻ൯

ௌ

݀ܵ௬                            

     At an evaluation point ݔԦሺ݌ሻ, the above integral relation reduces to the 
following regular integral equation: 

 

න
߲ଶ߶ሺ݌, ሻݕ

߲݊ݏ߲
൭ܶሺݕሻ െ ܶሺ݌ሻ െ

߲ܶሺ݌ሻ
௝ݔ߲

൫ݕ௝ െ ௝൯൱݌
ௌ

݀ܵ௬

ൌ න
߲߶ሺ݌, ሻݕ

ݏ߲
ቆ

߲ܶሺݕሻ

߲݊
െ

߲ܶሺ݌ሻ
߲݊

ቇ
ௌ

݀ܵ௬ 

(19) 

     Given the values of the temperature ܶ and its normal derivative 
డ்

డ௡
, obtained 

from (14) and (15), equation (19) provides a linear relationship between the 
directional derivatives of the temperature at the evaluation point ݔԦሺ݌ሻ, i.e. 

between the values of 
డ்ሺ௣ሻ

డ௫భ
  and  

డ்ሺ௣ሻ

డ௫మ
. A second relation between these two 

values is given by the known normal derivative at ݔԦሺ݌ሻ, i.e. 
డ்ሺ௣ሻ

డ௡
ൌ

డ்ሺ௣ሻ

డ௫భ
݊ଵ ൅

డ்ሺ௣ሻ

డ௫మ
݊ଶ. From these two expressions, it is possible to obtain the directional 

derivatives of the temperature field at each boundary point and find the 

corresponding tangential derivative  
డ்ሺ௣ሻ

డ௦
ൌ

డ்ሺ௣ሻ

డ௫భ
ଵݏ ൅

డ்ሺ௣ሻ

డ௫మ
 ଶ to be used in theݏ

integral equations (10) and (11) for the normal and tangential components of the 
surface velocity in order to determine the corresponding effect of the thermal 
creep on the flow field. 
     Figure 2 shows the obtained fluid temperature distribution at the rotor and 
housing boundaries of the single rotor mixer given in Figure 1, for different 
constant temperature at the solid walls. Two different cases are reported in the 
figure, corresponding to a hotter and colder rotor, i.e. ௥ܶ௜ ൐ ௥ܶ௘ and  ௥ܶ௘ ൐ ௥ܶ௜ 

Boundary Elements and Other Mesh Reduction Methods XXXII  23

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press



 

respectively. In Figure 3, we report the corresponding velocity fields inside the 
mixer in the case of a stationary rotor, corresponding to only a thermal creep 
fluid motion. Two symmetric recirculation regions are formed around the rotor 
head, where the direction of the recirculation motion changes according to the 
direction of the heat flux, i.e. ௥ܶ௜ ൐ ௥ܶ௘ or  ௥ܶ௘ ൐ ௥ܶ௜. Similar recirculation 
patterns are reported by Lockerby et al. [12] in the case of eccentric circular 
cylinders, however in their analysis they do not use a jump temperature 
condition, as in (13), but instead they use a high order thermal stress slip 
condition, where the tangential velocity is proportional to the tangential 
derivative of the normal heat flux. 
     In order to see the thermal creep effect on the recirculation pattern at the rotor 
head of a rotating mixer, in Figure 4 is reported the obtained flow fields 
corresponding to  ܮௌ் ൌ 0.1, 1 and 10. As can be observed from the figure, as the 
value of ܮௌ் increases the recirculation and the slip velocity at the rotor head are 
strongly affected by the thermal creep until the value of ܮௌ் becomes too large so 
that the thermal creep effect dominates the flow behaviour and a recirculation 
zone appears at the sides of the rotor head, as those observed in Figure 3 for the 
case of only thermal creep, but in the present case they are not located 
symmetrically. In addition, in the condition of very large value ܮௌ், the position 
of the recirculation zones changes with the direction of the heat flux. 

4 Conclusions 

In this work, the thermal creep effect at micro scale flows has been evaluated. 
This phenomenon usually takes place due to micro fluid flow of rarefied gases 
and could affect the velocity field due to a heat flux and a temperature difference 
in the domain. An integral equation approach based on the normal and tangential 
projections of the direct boundary integral representational formula for the 
Stokes velocity field is developed for the numerical simulation of creeping flow  
 

  
(A) (B) 

Figure 2: Temperature profiles at single rotor boundaries for 1 = ்ܮ: ௥ܶ௜ ൐
௥ܶ௘ (A) and ௥ܶ௘ ൐ ௥ܶ௜, (B). Solid lines represent the wall 

temperatures. 
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(A) (B) 

Figure 3: Vector velocities for ܮ௦= 0.5, 1 = ்ܮ and ܮ௦் = 10 and ௥ܶ௜ ൐ ௥ܶ௘ 
(A) and ௥ܶ௘ ൐ ௥ܶ௜, (B), without considering rotational velocity 
at the inlet surface. 

under linear slip boundary conditions and applied to analyze the performance of 
a single rotor mixer subjected to thermal creep. The slip condition was included 
in the boundary integral formulation by expressing the tangential shear rate in 
terms of the tangential component of the surface traction vector. The projection 
of the velocity integral representational formula on the normal and tangential 
directions smoothes the singularity of the integral kernels, resulting only in a 
weak singular kernel of the logarithm type, which can be numerically integrated 
by using Telles' transformation and standard Gaussian Quadrature formulae. 
     The integral formulation has been modified to account for the thermal effect, 
which is a function of the tangential heat flux. For the latter, an integral 
representational formulae was obtained by taking the limiting value of the 
gradient of the temperature field and multiplying the resulting relation by the 
surface tangential vector, presenting only singularities of the Cauchy type. The 
order of singularity of this type of integral was reduced by finding the integral 
representational formulae of a known potential field, with the same singularity as 
the field in consideration, reducing the expression to a regular integral equation 
at the evaluation point. The implementation of this formulation allowed us to 
observe that the thermal creep effect can modify the recirculation pattern at the 
rotor head of a rotating mixer dominating the flow behaviour and leading to 
recirculation zones that appear at different sides of the rotor head depending on 
the direction of the heat flux (see Figure 4).  
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(A) 

(B) 

(C) 

 
(D) 

 
(E) 

 
(F) 

Figure 4: Vector velocities with ܮ௦= 0.1 and ܮ ,1 = ்ܮ௦் = 0.1 (A), ܮ௦் = 1 
(B), ܮ௦் = 10 (C), ܮ௦் = 0.1 (D), ܮ௦் = 1 (E), ܮ௦் = 10 (F). Results 
in (A)-(C) are for ௥ܶ௜ ൐ ௥ܶ௘, while in (D)-(F) are for ௥ܶ௘ ൐ ௥ܶ௜. 
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