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Abstract

Heat transfer is one of the major engineering problems, which has to be addressed
when progress is made in engineering technology. Low thermal conductivity
of fluids such as water or oil, led to the introduction of nanofluids – stable
suspensions of nanosized particles in base fluid. Nanofluids have very high thermal
conductivities at very low nanoparticle concentrations and are able to substantially
increase heat transfer.

Numerical solver for simulation of flow and heat transfer of nanofluids was
developed using Boundary Element Method. Velocity-vorticity formulation of
Navier-Stokes equations is proposed for nanofluids and solved by a combination
of single domain and sub-domain boundary element method. The developed solver
was used to simulate three-dimensional natural convection of nanofluids. Results
of simulations show that a substantial heat transfer enhancement can be observed
and attributed to the usage of nanofluids. We observed that the nanofluid particle
volume fraction also plays in important role increasing the volume fraction
increases the heat transfer for all Rayleigh number values considered.
Keywords: nanofluids, boundary element method, natural convection.

1 Introduction

Nanofluid is a suspension consisting of uniformly dispersed and suspended
nanometre-sized (10–50 nm) particles in base fluid, pioneered by Choi [1].
Nanofluids are used to replace low thermal conductivity working fluids such as
water, oil or ethylene glycol. Nanofluids have very high thermal conductivities at
very low nanoparticle concentrations.

Buoyancy induced flow and heat transfer is an important phenomenon used in
various engineering systems. Increased thermal conductivity of nanofluids plays a
crucial role in the enhancement of heat transfer especially in slow, low Rayleigh
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number, flows. In this regime, usage of nanofluids instead of classical working
fluids, is most advantageous.

Numerous numerical methods have been proposed to simulate the natural
convection phenomena of pure fluids. Our, boundary element based methods, was
presented in Ravnik et al. [2]. We employ the velocity-vorticity formulation of
Navier-Stokes equations coupled with the energy equation. The unknown field
functions are the velocity, vorticity and temperature. We use single domain BEM
to solve the kinematics equation for boundary vorticity values (Škerget et al.
[3]). Apart for the boundary vorticity values, all other flow fields are solved for
by subdomain BEM (Popov et al. [4]). Subdomain BEM solution of a partial
differential equation leads to an over-determined sparse system of linear equations.
A sparse system enables fast algebraic operations and does not require a lot of
storage.

In this work we implemented the velocity vorticity formulation written for
nanofluids and derived a BEM based numerical algorithm to find a solution.

2 Governing equations

We consider water based nanofluids. Their thermophysical properties are given in
Table 1. Effective properties of the nanofluid are: density ρnf , dynamic viscosity
μnf , heat capacitance (cp)nf , thermal expansion coefficient βnf and thermal
conductivity knf , where subscript nf is used to denote effective i.e. nanofluid
properties. The properties are all assumed constant throughout the flow domain.
The non-dimensional velocity-vorticity formulation of Navier-Stokes equations
for simulation of nanofluids consists of the kinematics equation, the vorticity
transport equation and the energy equation:

∇2�v + �∇× �ω = 0, (1)

∂�ω

∂t
+ (�v · �∇)�ω = (�ω · �∇)�v + Pr

μnf

μf

ρf
ρnf

∇2�ω − PrRa
βnf
βf

�∇× T�g, (2)

Table 1: Thermophysical properties of water based nanofluids (Oztop and
Abu-Nada [6]).

pure water Cu Al2O3 T iO2

cp[J/kgK] 4179 385 765 686.2

ρ[kg/m3] 997.1 8933 3970 4250

k[W/mK] 0.613 400 40 8.9538

β[·10−5K−1] 21 1.67 0.85 0.9

α[·10−7m2/s] 1.47 1163 131.7 30.7
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∂T

∂t
+ (�v · �∇)T =

knf
kf

(ρcp)f
(ρcp)nf

∇2T. (3)

The flow and heat transfer of a nanofluid is defined by specifying the pure
fluid Rayleigh Ra and Prandtl Pr number values. The nanofluid properties are
evaluated using the following models (Khanafer et al. [5]): density from (4),
viscosity from (5), thermal capacity from (6), thermal expansion from (7) and
thermal conductivity from (8):

ρnf = (1− ϕ)ρf + ϕρs, (4)

μnf =
μf

(1− ϕ)2.5
, (5)

(ρcp)nf = (1− ϕ)(ρcp)f + ϕ(ρcp)s, (6)

βnf = βf

[
1

1 +
(1−ϕ)ρf

ϕρs

βs
βf

+
1

1 + ϕ
1−ϕ

ρs

ρf

]
, (7)

knf = kf
ks + 2kf − 2ϕ(kf − ks)

ks + 2kf + ϕ(kf − ks)
. (8)

3 Numerical method

The algorithm used to solve the set of governing equations (1)–(3) is devised as
follows. Either Dirichlet or Neumann type boundary conditions for velocity and
temperature must be known. In this paper we use the no-slip boundary condition on
all solid walls and prescribe temperature or temperature flux. Boundary conditions
for vorticity are unknown and are calculated as a part of the algorithm. The
following steps are performed.

1. Use models (4)–(8) to calculate ratios of nanofluid to pure fluid material
properties

2. Calculate vorticity values on the boundary by single domain BEM from the
kinematics equation (1).

3. Calculate velocity values by sub-domain BEM from the kinematics equation
(1).

4. Calculate temperature values by sub-domain BEM from the energy equation
(3).

5. Calculate vorticity values in the domain by sub-domain BEM from the
vorticity transport equation (2).

6. Check convergence. If all flow fields converged to 10−6 stop, else go to 2.
The three-dimensional solver capable of simulating flow and heat transfer

by solving velocity-vorticity formulation of Navier-Stokes equations by a
combination of single and sub-domain BEM was developed by Ravnik et al. [2, 7].
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The solver has been adapted for simulation of flow and heat transfer of
nanofluids. Governing equations are written in integral form. The kinematics
equation is

c(�ξ)�n(�ξ)× �v(�ξ) + �n(�ξ)×
∫
Γ

�v�∇u� · �ndΓ

= �n(�ξ)×
∫
Γ

�v × (�n× �∇)u�dΓ + �n(�ξ)×
∫
Ω

(�ω × �∇u�)dΩ, (9)

where �ξ is the source or collocation point, �n is a vector normal to the boundary,
pointing out of the domain and u� is the fundamental solution for the diffusion
operator: u� = 1/4π|�ξ − �r|. c(�ξ) is the geometric factor defined as c(�ξ) = α/4π,
where α is the inner angle with origin in �ξ. In order to write a linear system of
equations for the unknown boundary vorticity values, we set the source point into
every boundary node of the whole computational domain. This yields a full system
matrix where number of rows and columns is equal to number of boundary nodes.
It is solved using a LU decomposition method.

The partial derivative with respect to time in the kinetics equations is
approximated by second order three point finite difference scheme ∂T/∂t =
(3T − 4T ′ + T ′′)/2Δt, where Δt is the time step and prime and double prime
denote field functions in two earlier time steps. The final forms of vorticity
transport and energy equation are

c(�ξ)ωj(�ξ) +

∫
Γ

ωj
�∇u∗ · �ndΓ =

∫
Γ

u∗qjdΓ +
1

Pr

μf

μnf

ρnf
ρf

·

·
(∫

Γ

�n · {u∗(�vωj − �ωvj)} dΓ−
∫
Ω

(�vωj − �ωvj) · �∇u∗dΩ
)

−Raβnf
βf

μf

μnf

ρnf
ρf

(∫
Γ

(u�T�g × �n)jdΓ +

∫
Ω

(T �∇× u��g)jdΩ

)

+
1

Pr

μf

μnf

ρnf
ρf

1

2Δt

∫
Ω

(3ωj − 4ω′
j + ω′′

j )u
∗dΩ, (10)

c(�ξ)T (�ξ) +

∫
Γ

T �∇u∗ · �ndΓ =

∫
Γ

u∗TqdΓ

+
kf
knf

(ρcp)nf
(ρcp)f

(∫
Γ

�n · {u∗(�vT )} dΓ−
∫
Ω

(�vT ) · �∇u∗dΩ
)

+
kf
knf

(ρcp)nf
(ρcp)f

1

2Δt

∫
Ω

(3T − 4T ′ + T ′′)u∗dΩ, (11)

where ωj is the jth component of vorticity.
In the subdomain BEM method we make a mesh of the entire domain Ω and

name each mesh element a subdomain. Equation (10) is written for each of the
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subdomains. In order to obtain a discrete version of (10) we use shape functions
to interpolate field functions and flux across the boundary and inside of the sub-
domain. In this work we used hexahedral subdomains, which enable continuous
quadratic interpolation of field functions. On each boundary element we interpo-
late the flux using discontinuous linear interpolation scheme. By using discon-
tinuous interpolation we avoid flux definition problems in corners and edges. A
function, e.g. temperature, is interpolated over a boundary elements as T =∑
ϕiTi, inside each subdomain as T =

∑
ΦiTi, while flux is interpolated over

boundary elements as q =
∑
φiqi. The following integrals must be calculated:

[H ] =

∫
Γ

ϕi
�∇u� · �ndΓ, [G] =

∫
Γ

φiu
�dΓ, [ �A] =

∫
Γ

ϕi�nu
�dΓ, (12)

[B] =

∫
Ω

Φiu
�dΩ, [ �D] =

∫
Ω

Φi
�∇u�dΩ. (13)

The square brackets denote integral matrices. In order to calculate the integrals,
a Gaussian quadrature algorithm is used. Calculation of the free coefficient c(�ξ)
is preformed indirectly considering rigid body movement problem solution. The
calculated c(�ξ) are added to the diagonal terms of the [H ] matrix.

The source point is set to all function and flux node in each subdomain. By
letting curly brackets denote vectors of nodal values of field functions, we may
write the discrete vorticity transport equation for x component as:

[H ]{ωx} = [G]{qx}
+

1

Pr

μf

μnf

ρnf
ρf

([Ay]{vyωx − ωyvx}+ [Az ]{vzωx − ωzvx})

− 1

Pr

μf

μnf

ρnf
ρf

([Dy]{vyωx − ωyvx}+ [Dz]{vzωx − ωzvx})

+Ra
βnf
βf

μf

μnf

ρnf
ρf

(gz[Ay]{T } − gy[Az ]{T } − gz[Dy]{T }+ gy[Dz]{T })

+
1

Pr

μf

μnf

ρnf
ρf

1

2Δt
[B](3{ωx} − 4{ω′

x}+ {ω′′
x}). (14)

Equations for y and z components are obtained analogously. Similarly, the
discrete counterpart of the energy equation (11) is:

[H ]{T } = [G]{qT }

+
kf
knf

(ρcp)nf
(ρcp)f

([Ax]{vxT }+ [Ay]{vyT }+ [Az]{vzT })

− kf
knf

(ρcp)nf
(ρcp)f

([Dx]{vxT }+ [Dy]{vyT }+ [Dz]{vzT })

+
kf
knf

(ρcp)nf
(ρcp)f

1

2Δt
[B](3{T } − 4{T ′}+ {T ′′}), (15)

where {qT} is a nodal vector of temperature flux.
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Since neighbouring subdomains share nodes, the resulting systems of linear
equations are over-determined. After taking into account the boundary conditions,
we solve them using a least squares solver (Paige and Saunders [8]). All integrals
depend only on the shape of subdomains and as such may be calculated only once,
prior to the start of the nonlinear iterative process.

3.1 Acceleration of computation

The numerical algorithm solves the above equations sequentially within a time
step. At the end of each iteration, RMS difference between flow fields of current
and previous iteration is calculated. When RMS difference for all flow fields
reaches εerr = 10−6, we stop to iterate. Within each iteration 7 over-determined
systems of linear equations must be solved (three for domain velocity, three for
domain vorticity and one for temperature). The LSQR solver [8] with diagonal
preconditioning is used. The solver requires a large number of iterations in order
to converge to a predefined convergence criteria ε. The original algorithm, as
proposed by Ravnik et al. [7], uses a constant convergence criteria. Value, which
is 10 times less than the required RMS criteria εerr was usually used, i.e. ε =
εerr/10 = 10−7.

We argue, that it is not necessary to keep ε = 10−7 during the whole iterative
process, since at the beginning, when RMS differences εerr are large, we do not
require a very accurate solution of linear systems of equations. Considering this
ε may set larger. Since the number of iterations of the solver of linear systems of
equation depends strongly on the required accuracy and since the most CPU time
is used in these routines, we anticipate a large decrease of CPU time.

In order to accelerate the solver, we used the following steps. Instead of keeping
ε constant, we change its value every iteration. We set the range for ε between
εmin = 10−7 and εmax = 10−3. We introduce a parameter R; 1 ≤ R ≤ 100. At
the end of each iteration, we calculate RMS differences εerr for all flow fields and
use the following algorithm to determine the new ε:

DO ∀ e q u a t i o n s
εold = ε
IF ( εerr/R . LT . ε ) THEN ε=εerr/R ELSE ε=εmax

IF ( εold . LT . ε ) ε = εold
IF ( ε . LT . εmin ) ε = εmin

END DO

We keep the linear solver accuracy between the minimum and maximum value
at ε = εerr/R. In the algorithm we do not allow for decrease of linear solver
accuracy. If at some stage during the nonlinear loop RMS difference increases, the
linear solver accuracy is not increased.

In order to test the algorithm, natural convection of air was simulated.
Simulations were run for Ra = 103, 104 and 105 using parameter R ranging
between R = 0.1 and R = 100. Table 2 shows the number of iterations of the
LSQR solver [8], CPU time and the number of iterations of the nonlinear loop.
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Table 2: Comparison of convergence performance and the number of iterations of
LSQR solver [8] for different values of parameterR. All simulations were
run until RMS difference reached εerr = 10−6.

εmin εmax R LSQR nit CPU time No. non-linear

[·103] [min] iterations

Ra = 103

10−7 10−7 - 103.5 75 131

10−7 10−3 100 73.6 55 132

10−7 10−3 10 57.2 45.7 138

10−7 10−3 1 37.9 35.5 154

Ra = 104

10−7 10−7 - 148.8 108 205

10−7 10−3 10 79.9 66.3 207

Ra = 105

10−7 10−7 - 759.9 570 1235

10−7 10−3 10 410.6 363 1255

10−7 10−3 1 202.9 228 1179

10−7 10−3 0.1 150.6 241 1774

Within each non-linear loop iteration, seven linear systems of equations must be
solved using LSQR solver. The table presents cumulative values for number of
LSQR iterations.

At Ra = 103, the total number of iterations of the LSQR solver required for
the computation to converge at constant ε drops to more than one half of its value
when using newly proposed dynamic solver accuracy algorithm with R = 1. At
the same time, the CPU time of the whole non-linear loop is also decreased by
one half. At higher Rayleigh number values even better decrease of CPU time is
observed. The gain in CPU time seems to be unaffected by the nonlinearity of the
problem, i.e. the Rayleigh number. The number of non-linear iterations needed to
reach the solution is also stable. Based on this analysis we decided to use dynamic
solver accuracy algorithm and we chose the value R = 10 for all further analyses.

4 Test case

We used the developed numerical algorithm to simulate natural convection of
nanofluids in a cubic cavity. The cavity is filled with fluid and subjected to a
temperature difference on two opposite vertical sides, while the other four are
adiabatic. Water (Pr = 6.2) and water based nanofluids (Table 1) for several
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Rayleigh number values were considered. In our previous work (Ravnik et al.
[2]) we examined this problem using air as the working fluid. We established,
by comparison with other authors (Tric et al. [9]), that a grid with 253 nodes was
sufficient. In this paper we increased the grid density to 413 nodes in order to
further increase the accuracy of computations. Nodes were concentrated towards
the hot and cold walls in such a way that the ratio between the largest and the
smallest element length was 7.

In order to compare effectiveness of nanofluids in different simulations, wall
heat flux is calculated. Usually, the heat flux Q̇ is expressed in terms of pure fluid
thermal conductivity, characteristic flow scales and a non-dimensional Nusselt
number, i.e. Q̇ = kfLΔT ·Nu. The Nusselt number,Nu, is defined as the integral
of the temperature flux through a wall. For a nanofluid, it is written as

Nu =
knf
kf

∫
Γ

�∇T · �ndA, (16)

where Γ is the surface through which we calculate the heat flux and �n is a unit
normal to this surface. We study local variation of heat flux using the local Nusselt
number defined as Nul(x, y, z) = knf/kf �∇T · �n.

4.1 Results

Applying a temperature difference on two opposite walls of an otherwise insulated
cavity starts up natural convection producing a large vortex in the main part of
the enclosure. At low Rayleigh number values the vortex is weak and the heat
is transferred predominately by diffusion. Convection dominates at Ra = 106,
where temperature stratification may be observed. The flow becomes unsteady for
higher Ra values with vortices forming along the hot and cold walls. Due to high
thermal conductivity of nanofluids we expect to observe the largest improvement
in heat transfer of nanofluids for cases where diffusion play a non negligible role.
Thus, simulations were performed for Rayleigh number values betweenRa = 103

and Ra = 106 for three nanofluids. Two solid nanoparticle volume fractions in
nanofluids were considered: ϕ = 0.1 and ϕ = 0.2.

Nusselt number values for the natural convection in a cube are shown in Table
3. Using water based nanofluids instead of pure water increases heat transfer in all
cases. For low Rayleigh number, where diffusion is the predominant heat transfer
mechanism, the enhancement is the largest. For Cu nanofluid at Ra = 103 we
observe an 27.2% increase in heat transfer for ϕ = 0.1 and 64.1% for ϕ = 0.2.
Similar findings were reported by Abu-Nada and Oztop [10] for 2D inclined cavity
case.

As the Rayleigh number increases, convection becomes the dominant heat
transfer mechanism, while diffusion is negligible. Thus, the increased thermal
conductivity of nanofluids plays a less important role in the overall heat balance.
All nanofluids exhibit smaller heat transfer enhancement as compared to the low
Rayleigh number case. At Ra = 106 Cu nanofluid increases heat transfer at
ϕ = 0.1 for 11.6% and at ϕ = 0.2 for 21.6%.

10  Boundary Elements and Other Mesh Reduction Methods XXXII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press



Table 3: Nusselt number values for the natural convection in a cube. Solid particle
volume fraction is denoted by ϕ.

Ra Water Water+Cu Water+Al2O3 Water+T iO2

pure ϕ = 0.1 ϕ = 0.2 ϕ = 0.1 ϕ = 0.2 ϕ = 0.1 ϕ = 0.2

103 1.071 1.363 1.758 1.345 1.718 1.297 1.598

104 2.078 2.237 2.381 2.168 2.244 2.115 2.132

105 4.510 4.946 5.278 4.806 4.968 4.684 4.732

106 9.032 10.08 10.98 9.817 10.39 9.556 9.871

In our geometry the hot and cold walls face each other in x direction. Thus, the
main vortex, which is induced by the onset of natural convection is located in the
y plane. We chose the y = 0.5H plane to study the two velocity profiles: vertical
velocity vz(x, 0.5H, 0.5H) and horizontal velocity vx(0.5H, 0.5H, z) across the
centre of the enclosure. The comparison of profiles for Ra = 103 and Ra = 106

for water and nanofluids is shown in Figure 1.
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Figure 1: Velocity profiles vx(z) and vz(x) through a centre of the y = 0.5H
plane for natural convection in a differentially heated cubic cavity. Top
row Ra = 103, bottom row Ra = 106. Solid line denotes pure water,
dashed line ϕ = 0.1 nanofluid and dotted line ϕ = 0.2 nanofluid.
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When diffusion dominates (Ra = 103) we observe that pure water reaches
the highest velocities, while addition of solid particles slows down the flow. The
decreased velocity results in decreased convective heat transfer. However, since
in this regime the majority of heat is transported by diffusion, the decrease due
to lower velocity is almost negligible and the overall heat transfer of nanofluids
is still very large due to higher thermal conductivity of a nanofluid. In the
Ra = 106 case convection dominates. Here we observe that velocities reached
by nanofluids are higher that the velocities of pure water. Thus, using nanofluids,
the velocity profiles, and in consequence, temperature profiles and heat transfer are
increased. The relative increase of heat transfer in the convection dominated case
is smaller that the increase in the diffusion dominated case because the increased
thermal conductivity does not play an important role in the convection dominated
heat transfer. When comparing velocity profiles between different nanofluids we
observe only slight differences. The Cu nanofluid reaches the highest velocities,
while the highest velocities forAl2O3 nanofluid are about 4% lower and for T iO2

approximately 9% lower.
Figure 2 displays temperature contours in the central y = 0.5H plane.

Comparing the temperature fields for different nanofluids we observe almost
identical temperature distribution in the central part of the enclosure. Differences
are larger closer to the walls, although their magnitude is still small. Since heat
transfer depends on the temperature gradient on the walls, we examined the
temperature contour closest to the hot and cold walls.

Heat flux distribution on a profile across the hot wall is shown in Figure 3. The
heat flux is smaller at the top of the hot wall and larger at the bottom, since the
hot fluid is rising and decreasing the temperature gradient at the top. Comparing
the Ra = 103 and Ra = 106 cases, we see that the heat transfer enhancement
is, relatively speaking, larger in the diffusion dominated Ra = 103 case than the
convection dominatedRa = 106 case.
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Figure 2: Temperature contours on the central y = 0.5H plane. Contour values
are -0.4(0.1)0.4; Ra = 103. Solid line denotes pure water, dashed line
ϕ = 0.1 nanofluid and dotted line ϕ = 0.2 nanofluid.

12  Boundary Elements and Other Mesh Reduction Methods XXXII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press



0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

5 10 15 200

0.2

0.4

0.6

0.8

1

z z

Nul(1,
1
2
, z) Nul(1,

1
2
, z)

Ra = 103 Ra = 106

T iO2;ϕ = 0.2
Al2O3;ϕ = 0.2Cu;ϕ = 0.1

Al2O3;ϕ = 0.1 Cu;ϕ = 0.2
pure water

T iO2;ϕ = 0.1

Figure 3: Heat flux shown in terms of local Nusselt number on a profile across hot
wall on the y = 0.5H plane.

5 Summary

The paper presents a numerical method for the simulation of flow of nanofluids.
The method is based on the BEM solution of the velocity vorticity formulation of
Navier-Stokes equations. A combination of single domain and sub-domain BEM
was used. A dynamic solver accuracy algorithm was implemented to speed up
simulations.

The developed algorithm was used to simulate natural convection in a three-
dimensional differentially heated cavity of three types of water based nanofluids.
Heat transfer, expressed with Nusselt number values, was presented for water and
three nanofluids (Cu, Al2O3 and T iO2). Results show that using water based
nanofluids instead of pure water enhances heat transfer and that the enhancement is
largest when diffusion is the dominant heat transfer mechanism. Simulations also
revealed that heat transfer enhancement grows with increasing solid nano-particle
volume fraction in the nanofluid.
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