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Abstract

The no slip boundary condition is traditionally used to predict velocity fields in
macro scale flows. When the scale of the problem is about the size of the mean
free path of particles, it is necessary to consider that the flow slips over the solid
surfaces and the boundary condition must be changed to improve the description
of the flow behaviour with continuous governing fluid flow equations. Navier’s slip
boundary condition states that the relative velocity of the fluid respect to the wall
is directly proportionally to the local tangential shear stress. The proportionally
constant is called the slip length, which represent the hypothetical distance at the
wall needed to satisfy the condition of no-slip flow. Some works have misused
boundary conditions derived from Navier’s work to model slip flow behaviour for
example by employing expressions, for diagonal and curved surfaces, that were
derived for flat infinite surfaces aligned with coordinate axes. In this work, the
creeping flow of a Newtonian fluid under linear slip conditions is simulated for the
cases of a Slit and a Couette mixer by means of the Boundary Element Method
(BEM). In the evaluation of such flows, different magnitudes of slip length from
0 (no slip) to 1.0 are analysed in an effort to understand the effect of the slip
boundary condition on the physical behaviour of the simulation system. Analytic
solutions for both geometries under slip flow are used to estimate L2 norm error,
which is below 0.25% for Couette flow and 1.25% for Slit flow, validating the
approximation applied.
Keywords: slip flow, linear slip boundary conditions, boundary integral methods,
Couette mixer.
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1 Introduction

Microsystems Technology (MST) devices are widely used in life sciences and
chemistry applications, and its potential uses extend to medical sample testing [1]
and drug delivery systems [2]; gas and liquid heat exchangers [3, 4] and chemical
mixers [5] for enhancement of heat and mass transfer rates; and fluid control and
measurement [6] devices. Micro heat exchangers and mixers are currently used
for steam gas reforming to produce alternative fuels [7], nuclear resources exploit-
ing [8], micro integrated circuits cooling [9], micro fuel cells [10], among others.

When geometry devices are scaled down, the surface-to-volume ratio increases
dramatically so that the surface related phenomena become increasingly dominant,
e.g. micro heat exchangers and micro mixers present higher heat and mass trans-
fer rates than macro systems of equal capacity [11]. Therefore, some new features
emerges when mechanical structures are sufficiently small, and it becomes impor-
tant to understand the various types of interactions that arises between the fluid
flow constituents and the solid surfaces that contain it.

Different phenomena associated with surface-fluid interactions can be expected
when the continuum assumption is close to being broken. For gases, four important
effects appear: rarefaction, compressibility, viscous heating and thermal creep. In
liquids, phenomena like wetting, adsorption and electrokinetics may be present
[12]. However, in both liquids and gases, a phenomenon known as the slip flow
regime emerges as a consequence of an insufficient number of molecules in the
sampling region [13], affecting the momentum transport at solid-fluid interfaces
compared with no slip type flows (i.e. macro scale flows).

So far, micro fluid flow behaviour has been studied under continuum [14] as
well molecular approaches [15, 16], with the aim of characterize and optimize the
operation of MST systems. In order for a fluid to be modelled as a continuum,
all of its properties (i.e. kinematic, transport and thermodynamics properties) must
be continuous; for that to be possible, enough molecules must be included com-
pared to the length scale of the flow. In the case of gases, this premise is satisfied
when the length scale based on transport properties is greater than 1 μm (10−6 m);
for liquids the length scale is based on transport properties and must be larger
than 10 nm (10−8 m) [17]. Appropriate velocity slip and temperature conditions
at the wall surface must be used to employ continuum models to describe flow
behaviour in microflow devices. Navier’s slip boundary condition states that the
relative tangential fluid velocity, uf

t , with relation to wall velocity, Uw
t , is directly

proportionally to the local shear rate projection in the tangential direction, γ̇t, as
presented in equation (1). The proportionally constant is called slip length Ls, and
represent the hypothetical distance at the wall needed to satisfy the no-slip flow
condition [17].

uf
t − Uw

t = Lsγ̇t (1)

The main difficulty present when applying the previous boundary condition is
related to evaluation of tangential shear rate at solid-fluid interface. Linear bound-
ary slip conditions have been applied to predict microflow behaviour in plane
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geometries with continuum governing equations. Attempts to apply this type of
boundary conditions for curved surfaces have conducted to inappropriate micro-
flow results due to mistreatment of mathematical models (see [18] for a compila-
tion of those works). Boundary Integral Methods (BIM) relate boundary values for
velocity and traction into the integral equations, rather than values throughout the
domain like in other partial differential equation numerical solution schemes. Eval-
uation of slip fluid flow behaviour with BIM can be done by expressing tangential
shear rate present in the slip boundary condition (1) in terms of surface tractions
at boundaries. This allows a more efficient and easy to use numerical evaluation
scheme to analyse micro fluid flow under slip flow regime.

Luo and Pozrikidis [19] study the motion of spherical particles in infinite fluid
and near a plane wall subjected to slip boundary conditions. The boundary integral
formulation presented in this work takes advantage of the axial symmetry of the
boundaries with respect to the axis that is normal to the wall and passes through the
particle center, reducing the solution to a system of one-dimensional integral equa-
tions. The previous system of equations is valid for sphere and the zero-thickness
disk, since the axisymmetry is lost as these particles tumble under the influence of
a shear flow. Results for torque and drag over sphere show reduction associated to
slip condition at those scales demonstrated the validity of numerical values when
compared with analytic results.

The objective of this paper is to present an implementation of a direct BIM to
solve Stokes equations under slip boundary conditions for curved geometries. The
tangential shear rate at solid-fluid interfaces is evaluated in terms of the surface
traction; producing accurate results for fluid flow behaviour in plane and curved
geometries not subjected to symmetry conditions. This will allow the evaluation of
more complex geometries such as present in micro-scale devices, like T type mix-
ers, micro-finned heat exchangers, control valves, among others. Analytic solu-
tions for Couette and Slit flow are used to test the numerical results obtained when
taking into consideration different types of boundary conditions: the first has only
Robin boundary conditions while the second is a mixed boundary condition prob-
lem (Robin, Dirichlet and Neumann).

This paper is divided as follows. Governing equations for Stokes flow are pre-
sented in Section 2. The next section shows integral representation for governing
equations presenting slip boundary conditions which are defined in terms of sur-
face traction at the collocation points. Then the numerical scheme used to solve the
set of equations and boundary conditions is presented. Numerical results for Cou-
ette and Slit flow are compared with analytic results through evaluation of L2 norm
error. Finally, conclusions regarding physical and mathematical considerations are
given.

2 Governing equations

Fluid flow in micro scale devices usually happens at very low Reynolds number
due to the magnitudes of velocities and characteristic lengths are small enough
compared to fluid density and viscosity. In these cases, fluid flow can be mod-
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elled by application of the Stokes system of equations (2), which states a balance
between the pressure force in the fluid and the viscous-shear force at all points in
the fluid.

∂ui

∂xi
= 0

∂σij

∂xj
= 0 (2)

where

σij = −pδij + μ

(
∂ui

∂xj
+
∂uj

∂xi

)
(3)

In equations (2)–(3), �u is the velocity, p the pressure, δij the Kronecker delta,
and μ is the viscosity of the fluid.

Boundary conditions are defined depending to the problem that is being solved.
In the case of Couette flow (or the flow between concentric cylinders), the external
cylinder is stationary while the internal one rotates at a constant angular dimen-
sionless velocity of value 1. For Slit flow (or fully developed flow between parallel
plates), the superior and inferior surfaces are stationary, while at the entrance and
exit the perpendicular velocities are made zero and the tractions are given only by
a pressure difference between them. For the cases shown dimensionless pressure,
Δp equal to 1 is considered. Slip behaviour defined in equation (1) is considered
by expressing local tangential shear rate in terms of vector surface traction defined
in (4). Additionally, variation in momentum transport at solid-fluid interface is
analysed by evaluation of slip length Ls between zero (no slip condition) and 1.0.

3 Boundary integral formulation for slip flow regime

The Stokes velocity field has the following direct integral representation formulae
for an arbitrary point x in a closed domain Ωi filled with a Newtonian fluid [20]:

ci ui(x) −
∫
S

Kij(x, y)uj(y)dSy +
∫
S

uj
i (x, y)fj(y)dSy = 0 (4)

where f is the vector surface tractions (fj(y) = �σij(�u, p)nj), and c is a constant
dependent on the position of the source point. For internal points c = 1 and for
point at a smooth boundary c = 1/2. The Stokeslet and the corresponding surface
traction or Stresslet for two dimensions are given by:

uj
i (x, y) = − 1

4π

[
ln
(

1
r

)
δij +

(xi − yi) (xj − yj)
r2

]
(5)

Kij(x, y) = − 1
π

(xi − yi)(xj − yj)(xk − yk)nk(y)
r4

(6)

being r the Euclidean distance between point x and y, r = |x− y|.
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The tangential projection of the surface traction can be expressed as follows:

fisi = σijnjsi =
[
−pnisi + μ

(
∂ui

∂xj
+
∂uj

∂xi

)
njsi

]

= μ

(
∂ui

∂xj
+
∂uj

∂xi

)
njsi (7)

Thus, the slip boundary condition in tangential direction can be expressed in
terms of the tangential projection of the surface traction in the following form:

uf
t − Uw

t = Lsfisi = Lsγ̇t (8)

due to the local shear rate projection in the tangential direction, γ̇t is defined as:

γ̇t =
(
∂ui

∂xj
+
∂uj

∂xi

)
njsi (9)

where si is the tangential vector to the boundary surface. The tangential and normal
components of fluid velocity can be expressed as:

uf
t = uisi uf

n = uini (10)

Given the dependency of fluid velocity with nodal values of surface traction
at the boundaries, a new system of equations will be defined to simultaneously
consider this effect. After discritization using the BIM, equations (4), (8), and (10)
can be written in matrix form as:

[H ][�u] = [G][�f ] (11)

[S][�u] − Ls[S][�f ] = [ �Uw
t ] (12)

[N ][�u] = [ �Uw
n ] (13)

[H ] and [G] being the usual matrices in BEM, [�u] and [�f ] are, respectively, the
velocity and surface traction vectors from the boundary problem, and [S] and [N ]
are matrices for each element built from the tangential and normal vectors in the
following arrangements.

[S] =

⎡
⎢⎢⎢⎢⎣
s1

1 s1
2 0 0 0 0 · · ·

0 0 s2
1 s2

2 0 0 · · ·
0 0 0 0 s3

1 s3
2 · · ·

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎦ (14)

[N ] =

⎡
⎢⎢⎢⎢⎣
n1

1 n1
2 0 0 0 0 · · ·

0 0 n2
1 n2

2 0 0 · · ·
0 0 0 0 n3

1 n3
2 · · ·

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎦ (15)
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The super index in the previous array represents the node number. The new
system of equations is then defined in next form:

[A][ �X ] = [�b] (16)

where new matrices and vectors are defined as (dropping all [ ]):

[A] =

⎡
⎢⎣
H −G
S −LsS

N 0

⎤
⎥⎦ (17)

[�b] =

⎡
⎢⎣

0
�Ut

�Un

⎤
⎥⎦ (18)

�X =

[
�u
�f

]
(19)

The solution of this complete system of equations conduces to the evaluation of
velocities and tractions at the boundaries taking into account the effect of slip con-
ditions over flow behaviour and was solved by simple Gauss elimination method.

4 Integral equation discretization

Geometry discretization for numerical integration will be made with quadratic
elements with the aim to improve evaluation of velocity and surface tractions at
boundaries and to produce a more reliable micro scale flow behaviour. The inter-
polation scheme for a functionX(ε) is given by:

X(ε) = ψ1(ε)X(1) + ψ2(ε)X(2) + ψ3(ε)X(3) (20)

where X(1), X(2), X(3) are the values of X(ξ) on the three nodes of the element
and the interpolation functions �ψ are as follows:

ψ1 = 1
2ε(ε− 1); ψ2 = (1 − ε)(1 + ε); ψ3 = 1

2ε(ε+ 1) (21)

Standard Guassian Quadrature is used to evaluate the final set of integrals result-
ing from applying the interpolation function (20). Telles’ Transformation [21] and
Rigid Body Motion [22] are used to avoid singularity present when integrating
over the same element where the source point is located.

5 Numerical results

In this section the test performed for the direct boundary integral formulation
implemented to predict slip behaviour for Couette and Slit flow is presented, taking
into account different momentum transport at the solid-fluid interface by variations
of the slip length condition.
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5.1 Couette flow

An analytic solution for the tangential fluid velocity in Couette flow under linear
slip boundary conditions is given by ( [18]):

ut =
ω

A−B

(
Ar − 1

r

)
(22)

where

A = 1 −
2
Ls

re
r2
e

; B = 1 −
2
Ls

ri
r2
i

(23)

and being ω, re and ri, the angular velocity for internal cylinder, external and
internal radius, respectively. Tangential velocity ut is given for any radius r. The
slip length Ls variates between zero (no slip condition) and 1.0 to account for
momentum transport variation at both the internal and external cylinders. When Ls

is dropped to zero in equation (22), it reduces to Couette flow for no slip conditions
as is presented in [23]. A regular mesh was used to solve the linear system of
equations: 48 quadratic elements on both boundary surfaces and 300 uniformly
distributed internal points. It is important to point out that these internal nodes are
not required for the solution of the problem, but only for flow visualization and
numerical error evaluation.

Results for both no slip and slip Couette flow are presented in Table 1. Momen-
tum transport modification at the boundaries is evidenced by the reduction in
fluid velocities near the internal cylinder (70% for the higher slip length evaluated
respect to the no slip condition) as shown in Figure 1(A). For the outer cylinder,
the slip regimen induce a velocity over this boundary, which tends to reduce as the
slip length is increased, showing the continuity in transport momentum through
the fluid flow.

Errors below 0.25% indicate the good performance of direct boundary integral
formulation implemented in the system of equations (10). It is also observed that
there is a considerable reduction in error as the slip length is increased in spite of
discontinuity in the velocity at the wall and the fluid imposed by the variation in
this value. This could be explained by reduction in momentum transferred by the
surfaces to the fluid which implies an overall reduction in flow velocity.

Table 1: Assessment of Couette flow under slip conditions.

Ls 0 0.1 0.25 0.5 1.0

L2 norm (%) 0.248 0.252 0.175 0.127 0.063
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Figure 1: Velocity profiles for slip (A) Couette and (B) slit flow.

5.2 Slit flow

The analytic solution for velocity profile under slip flow over the horizontal sur-
faces is available in [24]:

u1 =
h2

2μ
ΔP
L

[
1 −

(x2

h

)2
]

+
h

μ

ΔP
L
Ls (24)

where L is the channel length, h its height and ΔP the imposed pressure differ-
ence. The second term in the right side of equation (24) accounts the slip effect in
the velocity profile. It reduces to no slip when Ls is dropped to zero as presented
in [23]. The tested mesh consisted of 160 quadratic elements on the outer surface
refined at a the corners and 600 internal collocation points.

The results for this case shown an error below to 1.2%, showing a good descrip-
tion of fluid flow for this geometry as can seen in Figure 1(B). An increase in fluid
flow velocities is observed with respect to the no slip conditions indicating the
effect of slip flow over momentum transport at boundaries. A detailed observation
of results in Figure 1(B) and Table 2 shows that deviation from analytic results
increase as flow goes from no slip to slip behaviour. Despite the mesh refinement
applied at the corners, numerical evaluation of normal and tangential vectors at this
positions affects the interior flow description. Furthermore, since the channel has a
height equal to the maximum slip length evaluated, an increase over this limit can
conduce to unrealistic results according to the definition of slip length in boundary
condition (1).

Table 2: Assessment of Slit flow under slip conditions.

Ls 0 0.1 0.25 0.5 1.0

L2 norm (%) 0.009 0.252 0.557 0.931 1.182
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6 Conclusions

A direct boundary integral method was used to evaluate slip flow behaviour for
two traditional fluid flow problems. Results for both problems presented accurate
results when compared with analytic results. As expected, a reduction in momen-
tum transportation occurs at the fluid-solid interfaces due to slip regimen, leading
to a change in the flow behaviour. A modified system of equations was used to eval-
uate slip flow in terms of surface traction and the usual matrices in BEM. Despite
the system of equations increased from N to 2N , the computational effort is kept
at low levels, which permits its application to the solution of more complex flow
systems.
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