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Abstract 

The non-linear buckling of composite laminates, triggered by geometric 
imperfections, is here analysed adopting a boundary element methodology. The 
non-linear theory for thin anisotropic plates couples in-plane forces causing 
buckling with the consequent bending deformation. The adopted formulation for 
in-plane forces in terms of the stress function is mathematically identical to that 
for the bending problem, thus boundary integral equations and fundamental 
solutions of the same form are used. Differential equations governing increments 
of the stress function and the deflection are obtained; the resulting integral 
equations include irreducible domain integrals depending on powers or products 
of the second derivatives of the stress function and the deflection. The latter are 
calculated through complementary integral equations obtained from the original 
ones by differentiating the field variables in the domain. The solution process 
accounts for the domain integrals through an iterative scheme; thus there is no 
need for modelling any field variables in the plate domain although domain 
meshing is necessary for performing numerical integrations. The boundary is 
meshed into quadratic discontinuous elements while the domain is divided into 
triangular cells with linear discontinuous variation of the relevant field variables 
for integration purposes. The analysis is implemented through a suit of C codes 
and applied to a rectangular symmetrically laminated plate. Its predictions are 
compared with published results obtained by other methods. The accuracy and 
limitations of the formulation are discussed and alternative approaches for 
expanding its scope pointed out. 
Keywords: boundary elements, composites, laminates, postbuckling, initial 
imperfections, irreducible domain integrals. 

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 
doi:10.2495/BE090191

Mesh Reduction Methods  211



1 Introduction 

Laminated plate structures are used for a variety of functions in aerospace and 
other industries due to their favourable strength-to-weight ratio. During the 
fabrication of such structures, it is possible that small deviations from the 
intended, perfectly flat shapes may occur. These deviations, known as geometric 
imperfections, may alter significantly the buckling behaviour of a plate. The 
plate response to in-plane loads in the presence of imperfections is governed by a 
non-linear thin-plate theory which can predict the large deflections occurring at 
or above the critical buckling load. 
     Early numerical studies on the post-buckling behaviour of perfectly flat, 
rectangular orthotropic plates were based on series solutions for the deflection 
and the stress function [1–3]. This approach was extended to include the flexure-
extension coupling terms as well as the effects of transverse shear and initial 
imperfections [4]. Shear deformation effects have also been studied through 
finite element analyses based on higher-order theories [5]. Such analyses have 
also allowed the assessment of boundary conditions [6]. Stiffened laminated 
panels have been analysed by a spline finite strip method also accounting for 
shear deformation [7]. 
     The boundary element method (BEM) had originally been applied to the 
analysis of non-linear isotropic plate behaviour induced by high lateral loads [8]. 
Other incremental and iterative approaches extended the scope of BEM to 
predict the non-linear plate response to in-plane edge loading. Such a response 
can either be generated as a bifurcation from the fundamental equilibrium path at 
the critical load [9, 10] or initiated by imperfections [11]. There has not been any 
known attempt at analysing the post-buckling behaviour of anisotropic laminated 
plates using a BEM-based technique. 
     An analytical procedure is presented here whereby BEM modelling, based on 
classical plate theory, is combined with irreducible domain integrals involving 
the deflection curvatures and the membrane stresses. The non-linear plate 
response to in-plane loading initiated by imperfections is determined 
incrementally with the non-linear terms taken into account through iterations 
within each loading step. The proposed boundary element formulation for the 
post-buckling analysis of symmetrically laminated plates has the advantage of 
using the same type of fundamental solution and its derivatives for both the 
membrane stress and buckling analyses. This allows the use of non-uniform edge 
loads for the analysis while facilitating the programming effort. 

2 Non-linear plate theory 

The orientation of a plate is assumed such that its mid-plane coincides with the 
x1-x2 plane of a two-dimensional Cartesian frame of reference. Greek indices for 
the range from 1 to 2 and the summation convention for terms with repeated 
indices are adopted. Plates with initial imperfections wi(xα), when loaded in their 
plane, undergo some deflection w(xα) before the theoretical critical buckling load 
is reached. The total plate deflection is given by 
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ˆ iw w w= +  

     The developing in-plane forces Nαβ and bending moments Mαβ satisfy the 
equations of equilibrium 

Nαβ,β + fα = 0                                                      (1) 

Mαβ,αβ + (Nαβ ˆ ,w α ),β + q = 0                                            (2) 

where q(xα) is a lateral distributed force acting on the middle plane and fα the 
body force, which may be derivable from a potential function V according to 

fα  = – V,α                                                                                                                            (3) 

     The solution of eqns (1) and (2) should satisfy the boundary conditions 

nβNαβ = pα  or uα = uα                                              (4) 

nαMαβ,β + sαsβnκMακ,β + φsαsβMαβ + nβNαβ ˆ ,w α = nV + ˆ ,α αp w  or w = w        (5) 

nαnβMαβ = nM  or nαw,α = nθ                                           (6) 

j
s n Mα β αβ = jC  or wj = jw                                      (7) 

where uα are the in-plane displacements, nα, sα are, respectively, the direction 
cosines of unit vectors normal and tangent to the plate boundary, φ is the 
boundary curvature; uα , w , nθ  are, respectively, prescribed boundary values of 
the in-plane displacements, deflection and deflection gradient relative to the 
boundary normal; pα , nV , nM , jC  are, respectively, prescribed boundary 
values of the traction, shear force, bending moment in the plane of the boundary 
normal, force at boundary corner j. 
     The constitutive equations for symmetrically laminated plates are 

Nαβ  = Aαβγδεγδ                                                                                                              (8) 

Mαβ  = Dαβγδκγδ                                                                                                           (9) 

where the mid-plane strains εαβ and deflection curvatures καβ are related to the 
displacements by 

εαβ  = 
2
1 (uα,β + uβ,α + ˆ ,w α ˆ ,w β – ,iw α ,iw β )                        (10) 

καβ  = –w, αβ                                                                                                                (11) 

     The compatibility condition is obtained by eliminating the in-plane 
displacements from eqn (10). This is accomplished by defining the operator 

Lαβ = δαβ ∇2 – ∂α ∂β                                                                                                  (12) 
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and applying it to both sides of eqn (10) leading to: 

Lαβεαβ = 
2
1 [ Lαβ ( ˆ ,w α ˆ ,w β ) – Lαβ ( ,iw α ,iw β )]                     (13) 

     It can be shown that 

Lαβ (w,α w,β)  = – (Lαβ w)w,αβ                                      (14) 

     Hence the compatibility condition, eqn (13), becomes 

Lαβεαβ = –
2
1 [Lαβ ( ŵ ) ˆ ,w αβ – Lαβ ( iw ) ,iw αβ ]                           (15) 

     Defining 1Aαβγδ
− as the inverse of Aαβγδ: 

1Aαβγδ
− Aγδλµ = δ αλδβµ,                                                                     (16) 

constitutive eqn (8) is re-arranged to 

εαβ  = 1Aαβγδ
− Nγδ.                                                        (17) 

     Introducing the stress function F such that 

Nαβ =  LαβF + δαβ V,                                                 (18) 

compatibility eqn (15) can be expressed in terms of F and w: 

Lαβ[ 1Aαβγδ
−  (LγδF + δγδ V) = – 1

2
[Lαβ ( ŵ ) ˆ ,w αβ – Lαβ ( iw ) ,iw αβ ]               (19) 

     Using constitutive eqn (9), curvature-deflection relation (11) and expressing 
the in-plane forces in terms of the stress function according to eqn (18), 
equilibrium eqn (2) can also be written in terms of F and w: 

– Dαβγδ w,αβγδ + [(LαβF + δαβ V) ˆ ,w α ],β + q = 0                       (20) 

     In the absence of body forces and lateral pressure, the only external action is 
that due to in-plane tractions causing non-linear buckling. Thus, field equations 
(19) and (20) are reduced to 

Âαβγδ F,αβγδ = – 1
2

[Lαβ ( ŵ ) ˆ ,w αβ – Lαβ ( iw ) ,iw αβ ]                      (21) 

Dαβγδ w,αβγδ = (LαβF) ˆ ,w αβ                                          (22) 

where 

Âαβγδ  = 1Aκκλλ
− δαβδγδ – 1Aαβκκ

− δγδ – 1Aκκγδ
− δαβ + 1Aαβγδ

−                       (23) 

     An incremental procedure is adopted for the solution of the non-linear system 
of eqns (21) and (22). The two field variables are incremented by small amounts 
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such that F → F + δF, w → w + δw and the field equations governing the 
increments are derived as follows 

Âαβγδ δF,αβγδ = – Lαβ ( ŵ )δw,αβ + 
2
1 Lαβ (δw)δw,αβ                              (24) 

Dαβγδ δw,αβγδ = (Lαβ ŵ )δF,αβ + (LαβF)δw,αβ + (LαβδF)δw,αβ                                 (25) 

     The field variable increments should also satisfy the boundary conditions 

δpα = nβδNαβ = pαδ  or δuα = uαδ                                   (26) 

δVn + δpα ˆ ,w α + (pα + δpα)δw,α = nVδ  or δw = wδ                        (27) 

δMn = nMδ  or δθn = nδθ                                            (28) 

δCj = ns jMδ = jCδ  or δwj = jwδ                                    (29) 

which are derived from eqns (4)-(7). 

3 Boundary integral equations for the linear operators 

The left-hand sides of both field eqns (21) and (22) or both incremental eqns (24) 
and (25) involve linear operators in the form 

Λc(u) = Cαβγδ u,αβγδ                                                                           (30) 

where Cαβγδ is a symmetric fourth-order constant tensor and u(x1,x2) a function 
defined in the two-dimensional domain Ω bounded by contour Γ. Due to the 
symmetry of Cαβγδ, the reciprocity relation 

, , dC u uαβγδ αβ γδ
Ω

Ω∗∫ = , , dC u uαβγδ αβ γδ
Ω

Ω∗∫                            (31) 

can be derived, where u*(x1,x2) is a second function, also defined in Ω. 
Integrating by parts both sides of eqn (31), applying Green's theorem and 
defining the operators 

c
nM (u) = – Cαβγδ nαnβ u,γδ                                                                                                    (32) 

c
nsM (u) = – Cαβγδ nαsβ u,γδ                                                                                    (33) 

Vc(u) = – (Cαβγδ nα + Cακγδ sαsβ nκ) u,βγδ – φ Cαβγδ sαsβ u,γδ,                (34) 

eqn (31) is transformed to: 

[ ( ) ( )]dc cu u u u
Ω

Λ Λ Ω∗ ∗−∫ + c
bI (u,u*) + Jc(u,u*) = 0                     (35) 

where φ is the curvature of the boundary contour Γ
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c
bI (u,u*) = [ ( ) ( ) ( )+ ( ) ( ) ( )]dc c c c

n n n nu V u M u u M u u uV u
Γ

θ θ Γ∗ ∗ ∗ ∗− −∫      (36) 

Jc(u,u*) = { }
1

( ) ( )
K

c c
ns j ns jj jj

M u u M u u∗ ∗

=
−∑                 (37) 

where K is the number of corners along a non-smooth boundary Γ. Relative to 
the local n-s frame of reference relative to Γ: 

 c
nM (u) = – Cαβγδ nαnβ(nγnδ 

2

2
u
n

∂
∂

+ 2nγsδ 

2u
n s

∂
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+ sγsδ 

2
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s
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 c
nsM (u) = – Cαβγδ nαsβ(nγnδ 

2

2
u
n

∂
∂

+ 2nγsδ 

2u
n s

∂
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+ sγsδ

2
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s
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2
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n s

∂
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2

2
u
s

∂
∂

)                       (39) 

     Eqn (35) is transformed into a pair of boundary integral equations if u* is 
replaced by the fundamental solutions uλ

∗ ; λ = 1,2, satisfying 

Cαβγδ ,uλ αβγδ
∗ = δλ(x – ξ)                                        (40) 

with 

δ1(x – ξ) = δ(x – ξ)                                              (41) 

δ2(x – ξ) = ∂δ(x – ξ)/∂m(ξ)                                    (42) 

where δ(x – ξ) is the delta function representing a unit action at the source point 
ξ and m a unit vector of arbitrary direction emanating from the source point. 
Substituting uλ

∗  in eqn (35) and taking ξ to the boundary so that m becomes 
normal to it, gives  

*( ) dCu uλ
Ω

Λ Ω∫ – ( )kuλ ξ + b
CI (u, uλ

∗ ) + JC(u, uλ
∗ ) = 0                     (43) 

where u1 = u, u2 = ∂u/∂m and k = 0.5 along a smooth boundary. Expressions for 
uλ

∗  can be found in earlier, linear BEM analyses of laminated plates [12]. 

4 Integral equations for the non-linear problem 

Integral eqn (43) is applied to both extensional and flexural problems governed, 
respectively, by incremental eqns (24) and (25): 
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– ( )k Fλδ ξ + b
AI (δF, Fλ

∗ ) + JA(δF, Fλ
∗ ) + d

FI (w,αβ, δw,αβ, Fλ
∗ ) = 0              (44) 

– ( )k wλδ ξ + b
DI (δw, wλ

∗ ) + JD(δw, wλ
∗ ) + d

wI (F,αβ, δF,αβ, w,αβ, δw,αβ, wλ
∗ ) = 0   

(45) 

where 

d
FI (w,αβ, δw,αβ, Fλ

∗ ) = 1ˆ( ) , d
2

L w L w w Fαβ αβ αβ λ
Ω

δ δ Ω∗− +∫  

d
wI (F,αβ, δF,αβ, w,αβ, δw,αβ, wλ

∗ ) = ˆ[ , ( ) , ] dL w F L F F w wαβ αβ αβ αβ λ
Ω

Ω∗δ + + δ δ∫  

     The domain values of the stress function and deflection increments are 
obtained by setting k = λ = 1 in eqns (44) and (45) and recalling that F1 = F, 1F ∗  

= F*, w1 = w, 1w∗  = w*, so that 

( )Fδ ξ = b
AI (δF, F*) + JA(δF, F*) + d

FI (w,αβ, δw,αβ, F*)                    (46) 

( )wδ ξ  = b
DI (δw, w*) + JD(δw, w*) + d

wI (F,αβ, δF,αβ, w,αβ, δw,αβ, w*)            (47)  

     Thus, the incremental 2nd order derivatives of the stress function and 
deflection are obtained from 

, ( )F γδδ ξ = b
AI (δF, F*,γδ) + JA(δF, F*,γδ)+ d

FI (w,αβ, δw,αβ, F*,γδ)          (48) 

, ( )w γδδ ξ = b
DI (δw, w*,γδ) + JD(δw, w*,γδ)+ d

wI (F,αβ, δF,αβ, w,αβ, δw,αβ, w*,γδ)    
(49) 

5 Solution procedure 

Boundary element modelling of the plate contour, introduced to integral eqns 
(44) and (45) as well as (48) and (49) leads to the incremental solution of the 
problem governing the post-buckling behaviour of a symmetrically laminated 
plate. The variables δF and ∂(δF)/∂n in boundary integrals b

AI (δF, Fλ
∗ ; λ =1,2) 

on the right-hand side of eqns (44) and (48) are functions of the edge traction 
increments pαδ [12]. The distribution of the other two boundary variables 
Mn(δF) and Vn(δF) in the same integrals are unknown. 
     The deflection-related unknown boundary variables in boundary integrals 

b
DI (δw, wλ

∗ ; λ=1,2) on the right-hand side of eqns (45) and (49) are consistent 
with the specified boundary conditions among eqns (27)-(29). The boundary is 
discretised into quadratic discontinuous elements for evaluating the boundary 
integrals and the domain is discretised into linear discontinuous cells for the 
evaluation of domain integrals. The incremental membrane stresses and 
curvatures at points inside the domain are obtained using eqns (48) and (49).   
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     All the incremental values are assumed zero at the beginning of each step. At 
the first step and first iteration, an assumed pattern of very small initial 
imperfection wi is considered as the total deflection ŵ  over the domain. The 
unknown boundary distributions of Mn(δF) and Vn(δF) are obtained for an 
increment of edge traction pαδ by solving eqns (44) with d

FI (w,αβ, δw,αβ, Fλ
∗  ; λ  

= 1,2) set equal to zero. The incremental membrane stresses at domain cell nodes 
are obtained using eqn (48). The distributions of unknown deflection-related 
variables on the boundary are obtained by solving eqns (45). The domain 
integrals d

wI (F,αβ, δF,αβ, w,αβ, δw,αβ, wλ
∗ ; λ = 1,2) are evaluated using the 

incremental membrane stresses obtained previously. The incremental deflections 
and curvatures at domain cell nodes are obtained using eqns (47) and (49), 
respectively. Replacing the incremental values of membrane stresses and 
curvatures by the new values, the procedure is repeated in an iterative manner 
until the specified convergence criteria are satisfied. The adopted convergence 
criterion for the deflection after jth iterations is: 

1

1

1

( ) ( )
0.0005

( )

d

d

N
j j

i i
i

N
j

i
i

w w

w

δ δ

δ

−

=

=

−
≤

∑

∑
                                        (50) 

where Nd is the number of domain cell nodes. Similar criteria for the incremental 
membrane stresses are also imposed in order to reduce the error accumulated at 
each step. The final incremental values of the last iteration in the previous step 
are added to the membrane stresses, deflections and curvatures for the next step. 
The solution procedure is carried out in a similar manner for further steps. The 
procedure at (i+1)th step is summarised as follows: 
(1) From step i, ŵ , ˆ ,w αβ and Nαβ are known. 
(2) For step (i+1), ,w αβδ  are set equal to zero for the 1st iteration, otherwise 

taken from the previous iteration. 
(3) Domain integrals d

FI (w,αβ, δw,αβ, Fλ
∗  ; λ  = 1,2) are evaluated using the 

curvatures of the ith step and the incremental curvatures from the previous 
iteration within the (i+1)th step. 

(4) Eqns (44) are solved for the unknown boundary variables and then the 
incremental membrane stresses are evaluated at domain cell nodes using 
eqn (48). 

(5) Domain integrals d
wI (F,αβ, δF,αβ, w,αβ, δw,αβ, wλ

∗ ; λ  = 1,2), are evaluated 
using membrane stresses and curvatures from the ith step and the 
incremental membrane stresses and curvatures from the previous iteration 
within the (i+1)th step. 

(6) Eqns (45) are solved for unknown boundary variables and then the 
incremental deflection and curvatures are evaluated at domain cell nodes 
using eqns (47) and (49), respectively. 

(7) Convergence criteria are applied. 
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(8) If the convergence criteria are satisfied, the procedure moves to the next 
step, otherwise steps 2 to 6 are repeated. 

(9) Before moving to the next step (i+2), the values of ŵ , ˆ ,w αβ  and Nαβ are 
updated by adding the incremental values from the last iteration within step 
(i+1). 

6 Results 

The proposed BEM formulation for the post-buckling analysis of laminated 
plates was implemented through a suite of C codes. The analysis was applied to a 
simply-supported square plate with a side length of 1.0 m and a thickness of 10 
mm, subjected to uni-axial, uniformly distributed compressive loads along the 
stiffer direction. Two cases were analysed corresponding to different initial 
imperfection patterns with maximum values of 0.5 and 5 mm. The flexural 
rigidities and extensional stiffness of the plate were 

D11 = 16692.7 Nm   D22 = 417.319 Nm   
D66 = 250.0 Nm   D12 = 417.319 Nm 
A11 = 2.00313×109 N/m  A22 = 5.00782×107 N/m 
A12 = 1.25196×107 N/m  A66 = 3.0×107 N/m 

     The boundary was discretised into 80 quadratic discontinuous elements with 
50 linear domain cells over the plate. The results were compared with the 
corresponding solution for a perfectly flat plate given by Prabhakara and Chia 
[1], which was based on a double Fourier series for the transverse deflection and 
a double series for the stress function consisting of appropriate beam functions. 
The results are in good agreement for the range of post-buckling deflection 
shown in Figure 1. The present method relies heavily on iterations and its 
performance depends upon various factors like step size, the degree of non-
linearity, the convergence criteria and the rate change of slope of load-deflection 
curve. Thus, further parametric studies are required for identifying an optimised 
procedure for the solution. Alternative solution procedures whereby iterations 
may be avoided or their number significantly reduced are described in the next 
section. 

7 Concluding remarks 

A large deformation analysis leading to the prediction of the post-buckling 
behaviour was developed as an expansion and coupling of the formulations for 
linear analyses [12]. This problem is of considerable design interest since its 
output is linked more closely than the critical load to the strength limits of 
stiffened composite panels. The analysis performed shows that the present 
procedure is highly dependent on the size of load step, the number of iterations 
within each step, which is controlled by convergence criteria, and the degree of 
non-linearity. The size of load step should be reduced near the critical load and 
within the post-buckling region. Further validation of the proposed procedure is 
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required for developing an optimised, efficient analysis in terms of 
computational cost. 
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 Figure 1: Non-linear load-deflection curves for different initial 
imperfections for a simply supported plate under uni-axial uniform 
loading. 

     The advantage of the boundary element method relies on the existence of a 
boundary integral equation that reduces the dimensions of a problem by one thus 
leading to its more efficient formulation and solution. This basic advantage of 
BEM is to a certain extent compromised by the presence of irreducible domain 
integrals in the integral equations governing the plate post-buckling problem. 
Transformation of such integrals into boundary ones is therefore desirable and 
could be achieved by adopting suitable approximate representations of the 
domain unknowns. 

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 

220  Mesh Reduction Methods



     The performance of the proposed scheme may be improved by dividing each 
step into two sub-steps. Within the first of those sub-steps, the solution is carried 
out without considering the quadratic terms in the unknown increments 
appearing in the domain integrals of eqns (44) and (45). This will allow the 
direct solution of eqns (44) and the determination of the incremental membrane 
stresses over the domain from eqn (48). A consistent system of equations, 
containing the deflection-related boundary unknowns and the domain curvatures, 
is also obtained from integral eqns (45) and (49). After determining all 
incremental quantities, the result is further corrected by including the quadratic 
terms in the domain integrals and solving the system iteratively within the 
second sub-step of the current load step. 
     An alternative scheme would rely on a model for the deflection that would 
allow the numerical evaluation of the curvatures on which the domain integrals 
in the post-buckling eqns (44) and (45) depend. This can be achieved by 
adopting non-linear interpolation models in the form of higher order polynomials 
or trigonometric functions. The curvatures can be obtained by differentiating 
these models, which leads to a direct relationship between nodal cell curvatures 
and deflections. An additional system of equations for the deflections can be 
obtained from integral eqn (47). By eliminating the membrane stresses and the 
curvatures over the plate domain, the final system of equations would contain 
only the deflection-related boundary variables and domain deflections as 
unknowns. As with the previously described scheme, the solution can be initially 
carried out neglecting the quadratic terms in the domain integrals. After the 
determination of all incremental quantities, the result can be further corrected by 
including these quadratic terms and solving the system iteratively within the 
current load step. This approach may lead to a reduction and a more efficient use 
of iterations towards an accurate and stable solution. 
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