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Abstract 

The Boundary Element Dual Reciprocity Method has been implemented as a 
meshless approach. The method uses circular sub-domains with overlapping 
distributed inside the original domain of the problem. Since the source point is 
always in the centre of the circular sub-domain singular integrals are avoided 
regardless of the order of the derivative of the original integral equation. Three 
equations for two-dimensional (2D) potential problems are required at each 
node. The first equation is the usual BEM integral equation arising from the 
application of the Green’s identities and the remaining equations are the 
derivatives of the first equation in respect to space coordinates. In the current 
approach Radial Basis Function interpolation is applied to obtain the values of 
the field variables and partial derivatives at the boundary of the circular sub-
domains. Dual reciprocity method (DRM) has been applied to convert the 
domain integrals into boundary integrals. The method has been tested on a 
convection-diffusion problem. The results obtained using the current approach 
are compared to previously reported results obtained using the Finite Element 
Method (FEM), and the DRM multi-domain approach (DRM-MD) showing 
similar level of accuracy. 
Keywords: meshless method, integral equations, circular sub-domains, radial 
basis functions. 

1 Introduction 

The local boundary integral equation (LBIE) was proposed by Zhu et al. [1, 2]. 
In the LBIE the domain is sub-divided in a large number of sub-domains in a 
shape of a circle, with the source point in the centre of the circle. The most often 
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used interpolation for field variables were the moving least-squares, though 
Sellountos and Sequeira [3] used augmented thin plate spline (ATPS) Radial 
Basis Functions (RBFs) for interpolation of the field variable and gradients over 
the circular boundaries. The concept of “companion solution” is introduced in 
order to eliminate the single layer integral from the local boundary integral 
equation. In this way the potential field is the only unknown in the equations. For 
source points that are located on the (global) boundary of the given problem 
integration over the boundary has to be performed. 
     The present formulation similarly to the LBIE is implemented over circular 
sub-domains where the source points are placed in the centres of the circles. The 
work follows the idea of Bui and Popov [4] who proposed using three equations 
at each source point for 2D problems solved using BEM with overlapping sub-
domains. One equation is the original integral equation usually used in the direct 
formulation BEM, while the other two equations are the derivatives in respect to 
spatial coordinates of the original equation at the source point. In this work the 
augmented thin plate spline (ATPS) radial basis functions (RBFs) were used for 
interpolation of the field variable and gradients over the circular boundaries. This 
RBF was selected in order to use the same interpolation function for representing 
the field variables for the approximation in the DRM part of the formulation. 
Further in this paper it will be referred to the current meshless approach as the 
radial basis integral equation method (RBIEM). 
     The LBIE uses the concept of “companion solution” in order to avoid solution 
for the gradients/normal derivatives inside the problem domain, while the 
RBIEM solves for the potential and partial derivatives at each node. This enables 
the RBIEM to be a truly meshless approach since the values of the normal 
derivatives are obtained everywhere including the source points located on the 
global boundary of the problem domain. The boundary conditions in the RBIEM 
are imposed directly at the source points on the global boundary. In the RBIEM 
there is no need for integration over any part of the global boundary of the 
problem domain.  
     The RBIEM always produces a closed system of equations, unlike the DRM-
MD and the Boundary-Domain Integral Method (BDIM) which produce over-
determined systems of equations.  
     The RBIEM is especially effective in applications where the partial 
derivatives in respect to coordinates are required, e.g., the convection-diffusion 
equation, the Navier-Stokes equation. 
     Further in the paper the “global boundary” will mean the boundary of the 
given problem and the “local (circular) boundary” will mean the boundary of the 
circular sub-domains. 

2 The boundary element dual reciprocity method 

Let us consider the following equation:  
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where u(r) is a potential field, r is a position vector, xi is component of r, and t is 
time. Given a point r inside a domain Ω, by applying the Green integral formula 
equation (1) can be transformed into the following integral form:  
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where u*(r,ξ) is the fundamental solution of the Laplace problem, 
nuq ∂∂ )/(=)( ξξ  and  nrurq ∂∂ )/,(=),( ** ξξ .  

     The DRM approximation [5] is introduced to transform the domain integral in 
(2) in terms of equivalent boundary integrals. The implementation of the DRM 
with multidomain technique is explained by Natalini and Popov [6]. After 
application of the DRM, the following integral representation formula is 
obtained: 
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where bnJ and inJ  are the number of boundary nodes and internal nodes on the 
domain, respectively. 

3 The radial basis integral equation method 

The proposed formulation solves in each interior node three integral equations in 
order to obtain the potential u, and the partial derivatives ∂u/∂xj. Equation (3) is 
used to find the potential while the equations for derivatives ∂u/∂xj are obtained 
by differentiating (3) in respect to xj, where xj are components of r. The 
derivatives of (3) are given below:  























Γ

∂
∂

−Γ
∂

∂
+

∂
∂

+Γ
∂

∂
+Γ

∂
∂

−=
∂
∂

∫∫∑

∫∫

ΓΓ

ΓΓ

+

ξξ

ξξ

ηξξηξξηα

ξξξξ

dq
x
rudu

x
rq

x
ru

dq
x
rudu

x
rq

x
ru

k
ji

k
jij

k
k

k

jijij

inJbnJ

),(ˆ),(),(ˆ),(),(ˆ

)(),()(),()(

**

=1

**

    (4) 

     The normal derivative q in (4) can be written as:  
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where nk are components of the unit normal vector. 

4 Interpolation for the unknown values at the circular 
boundary of the sub-domain 

In order to perform the integration over the local boundaries of the circular sub-
domains, values of the potentials and partial derivatives must be known on the 
circles. Eight fictitious nodes were introduced on the circular boundaries in order 
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to define four quadratic elements used in the integration over the circles.  The 
values of the field variables at the eight nodes were determined through 
interpolation using the values of field variables at neighbouring nodes. The final 
system of equations solves for potentials and derivatives only at source points at 
centres of circular sub-domains, and not at the fictitious nodes on the circular 
boundaries. Only nodes at centres of sub-domains are used in the interpolation 
for obtaining the values of field variables at fictitious nodes on the circular 
boundaries. The unknown potential at one of the eight nodes, denoted by ω is 
approximated by n neighboring nodes xi by the following formula: 
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     Here f  is the Augmented Thin Plate Spline Radial Basis function and ai are 
the unknown coefficients.  
     The partial derivatives at ω are interpolated in a similar way: 
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where F0 = fji = f(xj,xi),  q0l = [ql(x1), ql(x2),…, ql(xn)]T and ql = ∂u/∂xl. 

5 Solution on the boundary of the domain 

Unlike the LBIE, the RBIEM does not require integration over any part of the 
global boundary. When the source point is on the global boundary, the part of the 
local boundary Γi of the sub-domain Ωi containing the source point would 
partially be located outside the problem domain Ω, see Figure 1. For the nodes 
on Γi which are outside Ω and Γ, extrapolation for the potential and the partial 
derivatives is required, as can be seen in Figure 1, in order to be able to solve (3) 
and (4) at xξ. The values extrapolated at ω for parts of circles outside the problem 
domain are required in the solution procedure, but do not have a physical 
meaning. However, these values are not presented in the final solution and 
therefore do not affect the validity of the approach.  
     The boundary conditions (BC) are imposed at the nodes, e.g. xξ, located at the 
boundary Γ. Therefore, it is necessary to place some of the nodes on Γ in order to 
define the geometry of the problem and to be able to impose the BCs. If Dirichlet 
BCs are imposed on the part of the boundary where xξ is located, the following 
equation would be applied at xξ 

( ) 0= Uxu ξ
 
                                                       (8)  

which would reduce the number of equations at xξ to two. If Neuman BCs are 
given on the part of the boundary where xξ is located, one of the partial 
derivatives would be eliminated by using (5) and only two equations would 
remain at xξ . 
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Figure 1: Extrapolation of field variables at a point on Γi of sub-domain Ωi 
located outside the problem domain Ω. 

6 Solution procedures 

The RBIEM generates one circular sub-domain for each of the nodes located 
inside the domain Ω or on the boundary Γ. In Figure 2 several such sub-domains 
are shown. The eight nodes on the boundary of the circles are introduced as 
nodes where the potential and derivatives are evaluated using interpolation (6). 
The values at the eight nodes are than used to calculate the integrals in (3) and 
(4) at node i.  
     Since the current formulation employs the DRM approach, an approximation 
procedure is used to represent the non-homogeneous term in (1) as is shown in 
(4). The DRM approximation employs a number of nodes located around node i. 
It is possible to use different set of nodes for the approximation of the field 
variables on the boundary of the sub-domain to the ones used for the DRM 
approximation. In this case, for each sub-domain, the same set of nodes was used 
for interpolation of the field variables over the circular local boundaries; this 
means the same set was used for each of the eight nodes on the circle, and for the 
DRM approximation. This significantly simplifies the search for the 
neighbouring nodes and saves CPU time.  
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Figure 2: Distribution of some of the circular sub-domains in the problem 
domain. 
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7 Numerical examples - convection-diffusion equation 

The numerical example used to test the developed approach is a Convection-
Diffusion equation with variable velocity field and reaction term [7]: 

0=2

2
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udD x −−                                                  (9) 

     A rectangular domain with length L and width W is considered. The following 
BCs were applied:  
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     The velocity field is defined as:  
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     The analytical solution of the above problem for L = 1m and D =1 m2s-1 is 
given by:  
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     Two values for k in (11) are used; k = 10 and k = 40. The maximum Peclet 
number for the examples is Pemax = 8.4, for k = 10, and Pemax = 23.4 for k = 40.  
     The accuracy of the RBIEM is studied by comparing the numerical results 
with the analytical solution (12) and with the numerical results obtained from the 
DRM-MD [7] and the FEM.  
     In the following examples the distribution of the nodes in the domain was the 
same irrespective of the approach applied. The distribution of the 185 nodes used 
and the boundaries of the sub-domains used in the RBIEM are shown in Figure 
3. The nodes are located at the centres of circles. In the examples 15 
neighbouring nodes are used in the DRM approximation and to approximate the 
value of nodes on the local circular boundaries. 
 

 

Figure 3: Distribution of the 185 nodes and the size of the circular sub-
domains used. 

     In Table 1 the value of potentials for the case of k = 40 obtained by using the 
RBIEM are compared with the analytical results and the results obtained using 
the DRM-MD [7], and the FEM. It can be seen that the RBIEM produces more 
accurate results than the other two approaches. The only part where RBIEM did 
not perform better was the first part of the domain, x = 0.02, which is close to the 
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boundary. It could be the influence of the boundary conditions or the very high 
gradients in this part of the domain. However, even in this part the error for 
RBIEM is less than 5.5% and it is the only approach of the presented ones that 
did not have error higher than 10% within the domain. 

Table 1:  Potential values at internal points obtained using the RBIEM and 
compared with the analytical solution, DRM-MD [7], and Galerkin 
FEM for a mesh with 185 nodes (case k=40). 

x Analytical 
solution RBIEM DRM-MD FEM 

(Galerkin) 
0.00 300.00000 300.00000 300.00000 300.00000 

0.02 189.38055 179.04666 186.34900 187.68159 

0.04 121.47817 118.35698 117.97600 119.41530 

0.07 64.30894 63.18108 60.98710 61.66200  

0.10 35.29222 35.16106 32.87830 33.14000  

0.14 16.77039 17.05505 15.19730 15.10380 

0.19 7.23952 7.47060 6.38346 6.12290 

0.25 3.01465 3.14630 2.60870 2.36960 

0.32 1.30135 1.34937 1.12280 0.96120 

0.40 0.63337 0.66253 0.55476 0.45580 

0.56 0.32339 0.34728 0.29582 0.25190 

0.75 0.55040 0.59498 0.52845 0.48900 

0.85 1.30052 1.32975 1.29153 1.21380 

0.93 3.45102 3.28041 3.46916 3.33370 

1.00 10.00000 10.00000 10.00000 10.00000 

 
     The results for the derivative of the potential at internal points for the case 
k=40 obtained by using the RBIEM and DRM-MD are shown in Table 2. It can 
be seen that RBIEM follows accurately the analytical solution and shows higher 
errors only at the boundary x=0, where the values are the highest.  

7.1 The convergence of the meshless method 

To test the convergence different number of nodes were used for the same 
problem given above. Five different distributions of nodes were used with 95 
nodes, 185 nodes, 689 nodes, 1513 nodes and 2657 nodes distributed inside the 
domain and on the boundary.  
     The convergence of the proposed method is tested by examining the 
maximum error and average error of the numerical results compared with the 
analytical results. The maximum error is defined as 
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Table 2:  Results for the derivative of the potential at internal points 
obtained using the RBIEM and compared with the analytical 
solution and DRM-MD for k = 40 and mesh with 185 nodes. 

      x Analytical RBIEM DRM-MD 
-NOSD 

0.00 -7020.35921 -6177.92330 -7161.47021 
0.10 -684.71146 -643.60917 -639.22498 
0.25 -40.39990 -38.82190 -33.38770 
0.40 -4.68772 -4.52786 -3.80930 
0.56 -0.32378 -0.19140 -0.23255 
0.63 0.59819 0.77870 0.61766 
0.75 3.63196 4.08681 3.62576 
0.80 6.92022 7.63943 6.89101 
0.85 13.78396 14.96371 13.81320 
0.93 47.61990 50.71610 46.83430 
0.97 95.28866 99.77956 93.10570 
1.00 165.98803 165.13214 159.87601 

 

Figure 4: The convergence of the RBIEM (case k=10). 
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where N is number of nodes, ui
n is the potential at node i obtained by numerical 

method and ui is the analytical solution for potential at node i. 
     In the tests of convergence the values for k = 10 was considered.  Figure 4 
shows the convergence of the proposed method. It is clear from the figure that 
the maximum error reduces from 9.6% when 95 nodes are used to 0.32% for the 
case when 2657 nodes are used. The average error also reduces from 5.27% for 
the case with 95 nodes to 0.13% for the case with 2657 nodes. It is seen that both 
maximum error and average error decrease continuously as the number of nodes 
increase from 95 nodes to 2657 nodes. 

8 Conclusions 

A meshless method based on the BEM and combined with the sub-domain 
approach has been proposed for solving the convection-diffusion equation. The 
approach uses circular sub-domains and places source points in the centres of the 
sub-domains. Three equations in 2D are solved at each node, where one equation 
is used for solving the potential and the remaining equations are used for solving 
the partial derivatives. Radial basis function interpolation is applied in order to 
obtain the values of the field variable and normal derivatives on the boundary of 
the circular sub-domains. DRM has been applied to convert the domain integrals 
into integrals over the boundary of the sub-domains. The current approach does 
not require any integration over the boundary of the computational domain and 
the application of the boundary conditions is straightforward. The only 
evaluation of the integrals is performed over the circular boundaries of the sub-
domains. The accuracy of the method has been compared with the accuracy of 
the DRM-MD with overlapping sub-domains. In all cases the current approach 
has shown comparable to higher accuracy than the formulations which used a 
mesh, in this case DRM-MD and the FEM. The method shows good 
convergence for the tested convection-diffusion problem. Though the method 
has been applied to 2D problems, extension of the approach to 3D problems is 
straightforward. 
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