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Abstract

A method for the efficient solution of the inverse geometric problem for cavity
detection using a point load superposition technique in the elastostatics boundary
element method (BEM) is presented in this paper. The superposition of point
load clusters to simulate the presence of cavities offers tremendous advantages
in reducing the computational time for the elastostatics field solution as no
boundary re-discretization is necessary throughout the inverse problem solution
process. The inverse solution is achieved in two steps: (1) fixing the location
and strengths of the point loads, (2) locating the cavity(ies) geometry(ies). For
a current estimated point load distribution, a first objective function measures the
difference between BEM-computed and measured deformations at the measuring
points. A Genetic Algorithm (GA) is employed to automatically alter the locations
and strengths of the point sources to minimize the objective function. The GA
is parallelized and dynamically balanced. Upon convergence, a second objective
function is defined and minimized to locate the cavity(ies) location(s) indicated
as traction-free surface(s). Results of cavity detection simulations using numerical
experiments and simulated random measurement errors validate the approach in
regular and irregular geometrical configurations with single and multiple cavities.
Keywords: boundary element method (BEM), cavity detection, genetic algorithm,
elastostatics.
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1 Introduction

The purpose of solving most inverse problem is to find the unknown: (a) in
the governing equation for field variable, (b) physical properties, (c) boundary
conditions, (d) initial condition(s), or (e) the system geometry using over-specified
conditions. Typically, the over-specified conditions are provided by measuring a
field variable at the exposed boundary, as in the case of the inverse geometric
problem. However, in some inverse problems, the over-specified condition can be
provided by internal measurements of field variable via embedded sensors (Divo et
al [1], Ulrich et al [2], Kassab et al [3]). In this paper, such measurements, along
with accompanying noise, are simulated numerically. The purpose of the inverse
geometric problem, that concerns this study, is to determine the hidden portion of
the system geometry by using over-specified boundary conditions on the exposed
portion. This problem has gained importance in thermal and solid mechanics
applications for nondestructive detection of subsurface cavities (Ulrich et al [2],
Kassab et al [3, 4], Divo et al [5]). In thermal applications, the method requires
over-specified boundary conditions at the surface, i.e., both temperature and flux
must be given, Divo et al [1]. In elastostatics applications, the over-specified
conditions are provided in terms of surface displacements and tractions. Generally,
surface tractions are known boundary conditions, while the surface displacements
are experimentally determined by measurements, (see Ulrich et al [2], Kassab et
al [3]).

A variety of numerical methods have been used to solve the inverse geometric
problem. This inverse problem has applications in the identification of surfaces
flaws and cavities and in shape optimization problems (Divo et al [1, 5, 7–
9], Ulrich et al [2], Kassab et al [3, 4], Bialecki et al [6]). The computational
burden is intensive due to the inherent nature of the solution of inverse problem
which requires numerous forward problems to be solved, regardless of whether a
numerical or analytical approach is taken to solve the associated direct problem.
Moreover, in the inverse geometric problem, a complete regeneration of the mesh
is also necessary as the geometry evolves. Boundary Element Methods (BEM)
lends themselves naturally to the numerical solution of the inverse problem (see
Divo et al [1], Ulrich et al [2], Kassab et al [3], Cerrolaza et al [10], Müller-Karger
et al [11], Annicchiarico et al [12–14], and Martinez and Cerrolaza [15]) and
this is because the solution algorithms developed by researchers typically involve
minimization of residuals, which measure the non-satisfaction of over-specified
boundary conditions. Additionally, in the iterative solution of this problem the
geometry is continuously updated. This places a premium on a numerical method,
which does not require domain discretization (Brebbia and Dominguez [16]).

A method for the efficient solution of the inverse optimization problem of cavity
detection using a point load superposition technique in elastostatics boundary
element methods is presented in this paper. The superposition of point load
clusters in the domain is posed as an alternative to satisfy the Cauchy conditions
on the surface. The point loads must be located inside the eventual cavity or
outside the domain in order to correctly satisfy the governing equation. Using
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Genetics Algorithms, the point load distribution, strength, and location are altered
to seek satisfaction of the over specified boundary displacements. Numerical
results of direct 2D problems using the BEM are used as an alternative to validate
the approach. Results of cavity detection problems simulated using numerical
experiments and added random measurement errors validate the approach in
regular and irregular geometrical configurations with single and multiple cavities.

2 Direct problem and BEM in elasticity

The solution of the forward elastostatics problem is expressed in terms of
displacements which, for an isotropic, homogeneous, and linearly elastic medium
imposed with an internal volumetric force bi, is governed by Navier’s equation as:

µ
∂2ui

∂xi∂xj
+

(
µ

1 − 2ν

)
∂2uj

∂xi∂xj
+ bi = 0 (1)

Here, u∼ is the displacement vector, ν is Poisson’s ratio, and µ is shear modulus.
Introducing the fundamental solution to Navier’s equation, a BEM formulation can
be derived from the Somigliana identity providing an integral relation between the
displacement vector up

i in a point collocation “p” and displacement vectors ui and
traction vectors ti at the boundary Γ as well as the body forces bi:
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Here, Ω is the problem domain, Gij and Hij are the displacement and traction
fundamental solutions (see Brebbia et al [16]). Establishing that internal force bi

is formed only by points loads, so that:

bi =
NL∑
l=1

Ql
iδ(xi, x

l
i) (3)

where NL is the number of points loads, Ql
i is the intensity of each load and

δ(xi, x
l
i) is the Dirac’s delta function located in the impact point of each load xl

i.
Using the properties of the Dirac’s delta function, the last integral equation term
Eq. (2) is reduced to:
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Employing standard boundary element procedures, the above equation is written
in discrete form as:

[H ] {u} = [G] {t} + {q} (5)

where the matrices [H ] and [G], with dimensions N × N , contain the influence
coefficient that relate displacement and traction vectors {u} and {t} on the
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Figure 1: Simulation of elliptical surface with an incoming parallel flow by
singularities superposition.

boundary. The size of N is N = d × NE × NN , where, d is the number of
space dimensions (2 or 3), NE is the number of elements, and NN is the number
of nodes per element. It is worth noting that all effects generated by points loads
are located in the vector {q}, therefore, when point loads that are utilized in the
inverse geometric problem solution are relocated in the evolving solution, there is
no need for boundary remeshing.

Introducing the boundary condition ui and ti in Eq. (5), an algebraic system with
the following form is obtained: [A] {x} = {b} + {q}. The vector {x} contains
the unknowns values of {u} and {t}. This system of equations is solved using
a standard method. In this paper, we use isoparametric-discontinuous-quadratic
elements: the geometry and vectors {u} and {t} values are approximated using
quadratic shape function locating the displacement and traction nodes within the
element boundaries.

3 Cavity simulation with point loads

The approach proposed in this paper for the modeling of internal cavity(ies) is
inspired from potential theory. For example, the superposition of a source and a
sink with the same strength located a distance L in a prescribed parallel flow results
in iso-flow lines and simulate the presence of a solid surface through the iso-lines
containing stagnation points. This null-flow line can be interpreted as the presence
of a solid surface or the artificial contour of an elliptical cavity, see Figure 1. The
notion of utilizing point sources and sinks to model cavities has been successfully
utilized by Divo et al [1] in solving the inverse geometric problem by thermal
methods. This theory can be applied in elastostatics field where the interpretation
is understood as superposition of point loads and the flow is considered to be that
of elastic energy. With proper adjustment of the location, number, and intensities
of these loads, one can generate a surface (or surfaces) that are traction-free and
therefore interpreted as a cavity surface(s), this is illustrated in Figure 2, where a
cluster of such point loads is shown.
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Figure 2: Geometric arrangement of points loads with a non-uniform elastic
energy flow.

4 Inverse problem and objective function

The numerical inverse process for cavity detection is achieved in 2 steps:
(1) fixing the location and strengths of the fictitious point loads, (2) locating
the cavity(ies) geometry(ies). For a current estimated point load distribution,
a first objective function measures the difference between BEM-computed and
measured deformations at the measuring points. Since the governing equation for
the elasticity problem is the Navier Equation without body forces, the fictitious
point loads must be located outside the problem domain, that is outside the exposed
bounding surface or within the subsurface cavities. As such, the first iteration
process searches for locations and strengths of the fictitious point loads until a
match is found between the tractions and deformations computed by the BEM
and those measured on the boundary as additional information or over-specified
conditions. This is achieved by the minimization of an objective function, S1, that
quantifies the difference between the deformations ui obtained by BEM (Eq. (5))
and measured deformations ûi providing the additional information obtained
through experimental measurements on the exposed boundaries (see Divo et al
[1], Ulrich et al [2], Kassab et al [3, 4]). Upon convergence, a second objective
function is defined and minimized to locate the cavity(ies) location(s) indicated
as traction-free surface(s). A Genetic Algorithm (GA) is employed to solve both
minimization problems and it is parallelized and dynamically balanced.

5 Method of optimization: GA

The GA used for this optimization process models the objective function as a
haploid with a binary vector to model a single chromosome as described in Divo
et al [1]. The length of the vector is dictated by the number of design variables
and the required precision of each design variable. Each design variable has to be
bounded with a minimum and a maximum value, and in the process the precision
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(a) Boundary conditions. (b) Discretization: 80 elements.

Figure 3: A square plate with centered circular hole of diameter 0.0254m.

Figure 4: An elongated rectangular bar with a circular cavity under tension.

of the variable is determined. This procedure allows an easy mapping from real
numbers to binary strings and vice versa. This coding process represented by a
binary string is one of the distinguishing features of GA and differentiates them
from other evolutionary approaches. The haploid GA place all design variables
into one binary string, called a chromosome or offspring. The GA optimization
process begins by setting a random set of possible solutions. Each individual is
defined by parameters combinations, which in this case are (Ql

i, xc, yc, rx, ry, θ)
and is represented as a bit string or a chromosome. Since GA are used to maximize
and not minimize, an aptitude function, Z , is formulated as the inverse of the
objective function. This aptitude function Z is evaluated for every individual in
the current population defining the fitness or their probability of survival. A series
of parameters are initially set in the GA code, and these determine and affect the
performance of the genetic optimization process.
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Figure 5: Discretization of the rectangular bar under tension using 120 elements.
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Figure 6: Contour of BEM-computed displacements, in [m].

6 Numerical examples

Results obtained from solving forward problems are used to generate
the displacement results at the external surface to simulate experimental
measurements. The latter are ladened with random error to simulate noise.
Both forward and inverse problems use the BEM as the field solver. The BEM
model uses discontinuous quadratic elements with adaptive quadratures. The first
example, displayed in Figure 3, considers a 0.0635× 0.0635m2 square plate with
a 0.0254m diameter centered hole and a 0.00674m diameter cavity. The plate is
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Figure 7: Evolution of cavity detection for example.

clamped in one side and the others are imposed with a 106Pa uniform compression
loads. The second example is displayed in Figure 4: a rectangular 0.25× 0.05m2

clamped bar with a uniform 2 × 106Pa imposed traction load. The problem is
discretized with 120 elements. The bar has a 0.02m diameter cavity located 0.4m
from the left-end of the bar, see Figure 5. The displacements for the two forward
problems shown in Figures 6(a) and 6(b) are used as inputs for the inverse problem.

The computed surface displacements at the traction-free exposed surfaces in
both of the problems are used as additional information to solve the inverse
geometric problem of cavity detection, and, in addition, a random error of
±1x10−8m is added to these surface displacements to mimic measurement
error. The location of the cluster of singularities along with the strengths and
cluster evolution, are shown in Figures 7(a) and 7(b) for the first example.
Similarly, these are displayed in Figures 8(a) and 8(b) for the second example. The
evolutions of the first and second objective functions for Example 1 are shown in
Figures 9(a) and 9(b). In these two examples, the approach proposed in this paper
is demonstrated to be successful in locating subsurface cavities using an inverse
elastostatics BEM-point load superposition method.

7 Conclusions

A method for the efficient solution of the inverse optimization problem of cavity
detection using a point load superposition technique in elastostatics boundary
element methods is development in this paper. Two examples demonstrate the
ability of the method to successfully locate single cavities in terms of their
locations and size whilst using inputs ladened with simulated random error. The
GA has been integrated as optimization tool using BEM. The technique is readily
applicable to the closely related problem of shape optimization, in which the
condition at the cavity side may be arbitrarily specified as a design target.
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Figure 8: Evolution of cavity detection for example 2.
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Figure 9: Objective function evolution for example 1.
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