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Abstract

The boundary element method (BEM) requires only a surface mesh to solve
thermoelasticity problems, however, the resulting matrix is fully populated
and non-diagonally dominant. This poses serious challenges for large-scale
problems due to storage requirements and the solution of large sets of non-
symmetric systems of equations. In this article, an effective and efficient domain
decomposition, or artificial sub-sectioning technique, along with a region-by-
region iteration algorithm particularly tailored for parallel computation to address
these issues are developed. The domain decomposition approach effectively
reduces the condition number of the resulting algebraic systems, while increasing
efficiency of the solution process and decreasing memory requirements. The
iterative process converges very efficiently while offering substantial savings
in memory. The iterative domain decomposition technique is ideally suited
for parallel computation. Results demonstrate the validity of the approach by
providing solutions that compare closely to single-region BEM solutions and
benchmark analytical solutions.
Keywords: domain decomposition, thermoelasticity, parallel computation,
boundary element method.
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1 Introduction

The boundary element method (BEM) is ideally suited to solve problems involving
thermoelastic effects as the coupled problem can formally be solved entirely
using a boundary discretization. This type of problem is encountered when a
solid is subjected to heating conditions that give rise to a temperature distribution
throughout its volume. This temperature distribution produces thermal expansions
in the object under consideration. In an isotropic material, at a uniform reference
temperature, Tref, a small uniform increase in temperature can produce a pure
volumetric expansion if the object is not constrained against such movement. This
expansion can be expressed as a so-called thermal strain (eT

ij), according to the
equation:

eT
ij = δijα∆T = δijα(T − Tref ) (1)

where α is the thermal expansion coefficient. The expression above reveals that
this thermal expansion can occur with absolutely no stresses present in the solid,
Kane [1], Dı́az et al [2]. In the standard BEM, the coefficient matrix is full
and practical issues of storage and computation arise in large-scale modeling,
particularly in 3D. Domain decomposition with explicit solution of the banded
coefficient matrix and multipole methods have been used to successfully mitigate
these problems. In this article, we propose an effective and efficient domain
decomposition, or artificial sub-sectioning technique, along with a region-by-
region iteration algorithm particularly tailored for parallel computation. The
domain decomposition effectively reduces the condition numbers of the resulting
algebraic systems, while increasing solution process efficiency and decreasing
memory requirements. The iterative process converges very efficiently while
offering substantial savings in memory and much promise for efficient solution
of 3D thermoelasticity problems using the BEM and it is ideally suited for parallel
computation.

2 BEM in thermoelasticity

The BEM can be utilized to resolve tractions, displacements and stresses on the
boundary Γ and in the internal points of a domain Ω, Brebbia and Domı́nguez [3],
based on a displacement boundary integral formulation for thermoelasticity. The
thermoelastic problem is governed by the equilibrium equation:

∂σij

∂xj
= −bi (2)

and the Hook’s constitutive relation:

σij =
2µν

(1 − ν)
δijeii + µeij (3)

where σij is the stress tensor, bi is the body force vector, eij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
is the strain tensor, ui is the displacement vector, δij is the Kronecker delta, µ

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

150  Boundary Elements and Other Mesh Reduction Methods XXIX



is the shear modulus, and ν is the Poisson ratio. Combining Eqs. (2) and (3) and
introducing the strain tensor in terms of displacements yields the Navier’s equation
as:

µ
∂ui

∂xj∂xj
+

µ

(1 − 2ν)
∂uj

∂xi∂xj
= −bi (4)

On each part of the boundary, Γ, either the displacement ui = ui on boundary Γu

or the traction ti = ti on boundary Γt, is prescribed in a well-posed problem. So
that, Γ=Γt ∪ Γu is the boundary of the domain Ω. Using the Somigilana identity,
an integral relation between the displacements up

i in a collocation point “p” and
the displacements ui and the tractions ti on all boundary Γ is readily obtained with
the body forces bi appearing formally as a domain integral:

cp
iju

p
i +

∮
Γ

HijuidΓ =
∮

Γ

GijtidΓ +
∫

Ω

GijbidΩ (5)

where Gij and Hij are fundamental solutions in terms of displacement and
traction respectively, and ti = σijnj is the traction vector and nj is the boundary
outward normal vector; see Brebbia and Domı́nguez [3] and Cheng et al [4]. For
thermoelasticity, the field stresses is:

σij = σe
ij + σT

ij (6)

where the first term σe
ij represents the contribution to the stress components due to

the actual straining of the material, while the last term σT
ij represents the thermal

expansion effect, Kane [1], which is given by:

σT
ij = −mδij(T − Tref ) (7)

Therefore the body forces in the Navier’s equation will have the form:

bi = −m
∂T

∂xi
(8)

where m is the thermoelastic constant of the form:

m =
2µα(1 + ν)
(1 − 2ν)

(9)

The domain integral can be expanded using Green’s second identity and other
transformations to finally obtain the boundary integral equation for displacements
as:

cp
iju

p
i +

∮
Γ

HijuidΓ =
∮

Γ

GijtidΓ+
m

k

[∮
Γ

EjqdΓ−
∮

Γ

Fj(T −Tref )dΓ

]
(10)

where k is the material thermal conductivity. Moreover, assuming thermal
equilibrium, ∂2T /∂xi∂xi = 0, the temperature a the collocation point p can
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also be related to the temperature and heat flux at the boundary by means of the
following boundary integral equation:

cpT p +
∮

Γ

GT qdΓ =
∮

Γ

HT TdΓ (11)

where cp is a geometrical constant that possesses similar properties as cp
ij , and GT

and HT are the fundamental solutions for temperature and heat flux. The normal
heat flux is defined as: q = −k (∂T/∂xi)ni. Additionally, one can obtain a BIE
that relates the stresses to boundary displacements, tractions, temperatures and
heat fluxes as:

cp
ijσ

p
ik +

∮
Γ

SijkuidΓ =
∮

Γ

DijktidΓ

+
m

k

[∮
Γ

AjkqdΓ −
∮

Γ

Bjk(T − Tref )dΓ
]

− cp
jkm(T − Tref )p

(12)

where Sijk and Dijk are the fundamental solutions of stresses. The coefficients Ej ,
Fj , Ajk and Bjk can be derived directly of the fundamental solution Gij , Brebbia
et al[3]. The discretized displacement BIE can be formulated as:

cp
iju

p
i =

NE∑
l=1

NN∑
n=1

tl,ni

∫ 1

−1

Gl
ij(η)Mn(η)J l(η)dη

−
NE∑
l=1

NN∑
n=1

ul,n
i

∫ 1

−1

H l
ij(η)Mn(η)J l(η)dη

+
m

k

NE∑
l=1

NN∑
n=1

ql,n

∫ 1

−1

El
j(η)Mn(η)J l(η)dη

− m

k

NE∑
l=1

NN∑
n=1

(
T l,n − Tref

) ∫ 1

−1

F l
j(η)Mn(η)J l(η)dη

(13)

where NE is the number of elements and NN is the number of degrees of freedom
of the field variables in each element. For all examples presented in this paper,
we utilize discontinuous quadratic elements with three (NN = 3) independent
nodes for the field variables in each element with Mn(η) denoting the respective
quadratic shape functions. Also, η denotes the homogeneous parametrization
variable(s) of the element geometry, and J l(η) is the Jacobian of the element ∆Γl.
To form an algebraic system, the point p is located at each of the NN nodes of all
the elements NE. This generates independent equations of the form:

[H ]{u} = [G]{t} + {s} (14)

The matrices [H ] and [G] have dimensions N ×N where N = d×NE ×NN
and d is the number of spatial dimensions (2 or 3). The vector {s} contains
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Figure 1: BEM single region discretization.

the integrated information of the thermal effects on the elastic field. Finally, the
boundary conditions ti or ui are introduced in this algebraic system to arrive at
the standard from: [A]{x} = {b} where the unknown vector {x} contains the
strains and tractions that they were not specified as boundary conditions. Once
the system is solved, all the field variables at the boundary are known and can be
employed to determine strains and internal stresses using the appropriate boundary
integral equations, Eqs. (10) and (12). It is important to emphasize that the same
procedure is initially used to determine the temperature and heat fields using the
temperature boundary integral equation.

3 Iterative domain decomposition (IDD)

To determine the IDD efficiency it is necessary first to indicate the requirements of
memory for the resolution of the domain problem Ω in a single region, see Fig. 1,
with the corresponding boundary conditions and the characteristic discretization
of the boundary element method.

If a discretization of NE elements with NN independent nodes per each
element is generated in a single region, the resulting algebraic system has
dimensions N × N , where N = d × NE × NN and d is the number of spatial
dimensions (2 or 3). So:

Ω ⇒ [
A

]
NxN

{
x
}

Nx1
=

{
b
}

Nx1
(15)

where the vector
{
x
}

represents the unknown values of the tractions and
displacements around the boundary. In this case the number of floating point
operations required to arrive at the algebraic system above is proportional to N2

as well as direct memory allocation also proportional to N2. The solution of
the algebraic system can be performed using a direct solution method such as
LU decomposition requiring floating point operations proportional to N3 or an
indirect method such as Bi-conjugate Gradient or Generalized Minimum Residual
(GMRes), which, in general, requires floating point operations proportional to N2

to achieve convergence.
On the other hand, if a multi-region solution process is adopted instead, the

original domain Ω is divided into K sub-domains Ωl ∴ l = 1...K separated by
interfaces artificially created, and each one is independently discretized, as shown
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+ + +

Figure 2: BEM domain decomposition and discretization.

in Fig. 2 for the case where K = 4. Successively, the solution in each sub-domain
can be obtained independently through a standard process, as long as the boundary
conditions in the artificial interfaces between the sub-domain are imposed.

For example, the first sub-domain Ω1 in figure 2 is independently analyzed. The
application of the boundary element method in this sub-domain is used to generate
an algebraic system as follows:

[
A

]
nxn

{
x
}

nx1
=

{
b
}

nx1
(16)

where the dimension n = d × ne × NN is obviously a fraction of the original
dimension N , Divo et al [7] provides a thorough explanation.

Naturally, the boundary conditions at the artificial interfaces between the sub-
domain are originally unknown, and, therefore a scheme must be devised to
guarantee the continuity and equilibrium of the field variables between the sub-
domain, namely that:

ua
i = ub

i

tai = −tbi
(17)

where the superscripts a and b indicate each side of the interface at issue. In
order to guarantee these conditions at each iteration including at the initial guess,
a preliminary discretization of very low resolution is carried out providing a
simplified model for the problem. This is solved by BEM to generate physically
meaningful initial values at the interfaces. The latter are updated utilizing a refined
discretization until a solution is achieved that satisfies the interfacial equilibrium
and continuity conditions within a set tolerance.

The progression of the iterative process involves two stages. In the first stage,
each interface is individually imposed with conditions of first kind prescribing
displacements ui and the tractions ti are solved using the standard boundary
element method in each sub-domain. These intermediate computed tractions do
not agree on each side of the interfaces, thus it is necessary to alter these tractions
to force them to satisfy the equilibrium conditions, and this is accomplished using
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the following:

t
a
i = tai − tai + tbi

2

t
b
i = tbi −

tai + tbi
2

(18)

This guarantees that the updated tractions, t
a
i and t

b
i , have the same magnitude

but opposite signs satisfying the equilibrium condition. Once these tractions are
updated, the second stage of the iterative procedure utilizes these tractions as the
imposed interfaces conditions for each sub-domain. A new displacement field in
the interfaces is obtained, and, again, the displacements do not agree on both sides
of each interface. They are updated by a simple average to ensure continuous
displacement, so that:

ua
i =

ua
i + ub

i

2

ub
i =

ua
i + ub

i

2

(19)

The iterative norm is defined as the root mean square measure between the updated
displacements and the previous ones provides is defined by:

L2 =

√√√√ 1
NNI

NNI∑
l=1

(ui − ui)2 (20)

where NNI is the number of nodes in the interfaces. The iteration is stopped when
ε reaches a preset value.

If a direct approach such as LU factorization is employed for all sub-domains,
the LU factors of the coefficient matrices for all sub-domains can be computed
only once at the first iteration and stored on disk or in RAM for later use during
the iteration process. Subsequently, only a forward and a backward substitution
will be required. This feature provides a significant reduction in the computational
burden for the overall BEM solution.

4 Parallel implementation

The domain decomposition BEM formulation detailed above is ideally suited to
parallel computing, Erhart et al [5]. The algorithm has been coded using MPICH
and implemented on a multiprocessor cluster comprised of dual 64 bit Xeon
3.2 GHz nodes equipped with 6 GB RDRAM running under the Fedora core 5
operating system. A static load-balancing routine is utilized to optimally distribute
the computation over the nodes. This optimization is performed using a discrete
Genetic Algorithm as described in Divo and Kassab [6]. A key step in the domain
decomposition is to keep each sub-domain discretization to a number of elements
that allows the problem to be stored in available RAM memory to avoid disk
paging, Divo et al [7].

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXIX  155



Iterations

N
o

rm

10 20 30 40 50

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2 2R

5R

1R

Figure 3: Elastic field convergence.
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Figure 4: Thermal field convergence.
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Figure 6: Contour plots of the dis-
placement for: (a) one-
region, (b) two-region,
(c) five-region cases.

5 Numerical validation and examples

The example presented in this paper, consists of a square cross-section cantilever
beam whose height and width are h = w = 0.5m and length L = 0.25m.
This example is provided to verify the convergence and accuracy of the domain
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decomposition approach in 3-D. The beam is discretized with 88 biquadratic
isoparametric discontinuous elements for a total number of degrees of freedom for
the single-region case of N = 2112 (3×88×8). The thermal conductivity is taken
as k = 14.9W/mK and the thermal expansion coefficient as α = 13 · 10−6K−1.
The shear modulus is set to µ = 60GPa and the Poisson ratio is set to ν = 0.3.
The model is solved in a single region and it is also decomposed into 2 and 5
sub-domains in the longitudinal direction. The reference temperature is Tref =
373K . The left longitudinal surface of the beam is clamped and imposed with a
temperature T = 373K . The rest of the surfaces are thermally insulated except for
the top perimetral surface which is imposed with a heat flux q = −1000W/m2.
An uniform load of P = 1MPa is imposed on the top perimetral surface.

Plots of the norm as a function of iterations for the elastic and thermal fields
are shown in Fig. 3-4 respectively. The norm decays rapidly for both multi-region
cases. The convergence criterion used was ε = 10−7 and was reached in less than
50 iterations for the two-region case and in less than 100 iterations for the five-
region case. Contour plots of the displacements of the cantilever beam are shown
for the one-region, two-region, and five-region cases in Fig. 6 (a)-(c).

It should be noted, in Fig. 5, that the two-region model corresponds to a
computational time reduction of 50.81% when compared to a single region
cantilever beam, while the five-region case provides a 73.07% reduction. It is noted
that the total time to solution reported here includes load balancing, generation
of H and G matrices, resolution of elastic and thermal field, and iteration to
convergence.

6 Conclusions

In this article, we propose an effective and efficient BEM iterative domain
decomposition (BEM-IDD) algorithm to solve large-scale 3-D BEM thermoelastic
problems. In order to tackle large problems, the original domain is decomposed
into a number of sub-domains. Results indicate that the proposed BEM-IDD
technique is well-suited for parallel computation, converging efficiently and
offering substantial savings in memory and computational time over traditional
BEM formulation.

Acknowledgements

The work undertaken in this project was carried out under the institutional and
financial support provided by the University of Central Florida (USA), University
of Carabobo (Venezuela), and FONACIT (Venezuela).

References

[1] Kane, J., Boundary Element Analysis in Engineering Continuum Mechanics,
Prentice-Hall, New Jersey 1994, pp. 123, 378.

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXIX  157



[2] Dı́az, F., Yates, J.R., and Patterson E.A., “Some improvements in the analysis
of fatigue cracks using thermoelasticity,” International Journal of Fatigue,
Vol. 26, 2004, pp. 365-376.

[3] Brebbia, C.A. and Domı́nguez, J. J., Boundary Element: An Introductory
Course, Computational Mechanics Publ. Boston co-publisher McGraw Hill,
New York, 1989, pp. 134-250.

[4] Cheng, A.H., Chen, C.S., and Golberg, M.A., Rashed, Y.F., “BEM for
thermoelasticity and elasticity with body force-a revisit,” Engineering
Analysis with Boundary Elements, Vol. 25, 2001, pp. 377-387.

[5] Erhart, K., Divo, E., and Kassab, A., “A parallel domain decomposition
boundary element method approach for the solution of large scale transient
heat conduction problems,” Engineering Analysis with Boundary Elements,
Vol. 30, 2006, pp. 553-563.

[6] Divo, E. and Kassab, A., “A meshless method for conjugate heat transfer
problems,” Engineering Analysis with Boundary Elements, Vol. 29, 2005,
pp. 136-149.

[7] Divo, E., Kassab, A., and Rodrı́guez, F.: “Parallel domain decomposition
approach for large-scale three-dimensional boundary-element models in linear
and nonlinear heat conduction,” Numerical Heat Transfer, Part B., Vol. 44,
2003, pp. 417-437.

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

158  Boundary Elements and Other Mesh Reduction Methods XXIX


