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Abstract 

The solution of singular integral equations (SIEs), taking into consideration the 
particular behaviour of its regular kernel and its right hand side function, is 
investigated in this paper. In particular, the problems appearing in the solution of 
singular integral equations in the boundary element method are verified. It is 
shown that the behaviour of singular integral equations does not depend only on 
the behaviour of the regular kernel but on the behaviour of the unknown 
function.  
Keywords: singular integral equation, singularities, nearby poles, elasticity, 
quadrature   formula, numerical integration, boundary element method. 

1 Introduction 

Many problems in the boundary element method can be reduced to a singular 
integral equation or to systems of singular integral equations [1]. For the solution 
of these equations where the known functions are Hölder continuous, 
approximate solutions through numerical techniques preserving the correct 
nature of singularities of the unknown function, have been developed [1–10]. 
     Problems in the numerical solution of singular integral equations appear 
because of the Cauchy singularities, either from the unknown function or from of 
the poles of the known functions. In addition the regular Kernels of the singular 
integral equation may have either nearby poles, or branch points, or jump 
discontinuities.  
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     These problems are created in the case of bodies with very narrow 
boundaries, in the case of the interaction of boundaries (e.g. for a crack 
approaching a boundary or in the case of parallel cracks when the distance 
between them becomes very small), and in the case of loading discontinuities. 
Especially, problems in the solution may appear in one of the following cases: 
 
(i) Singular loadings which creates singularities at the unknown function. 
(ii) Collinear or parallel cracks, where the distance between them is very small. 

There is a singular behaviour because both of them and also a nearby 
singularity because of the distance. In the case that one of the cracks is 
eliminated, its influence creates nearby singularities in the regular kernel of 
the integral equations and it is also influenced the unknown function. 

(iii) In the case of a very narrow body. The integral equation created in one of 
the boundaries, is influenced by the collocation points lying on the second 
one and vice versa. Thus, a nearby singularity is created inside the kernel of 
the second one. In the case that one of the boundaries is eliminated, the 
unknown function is influenced and also a nearby singularity is created at 
the regular kernel. 

 
     In order to confront the above problems modified quadrature rules have to be 
used. The purpose of this paper is to show and to interpret the above problems, 
that appear in the solution of singular integral equation in the BEM, and to 
propose a quadrature rule that may solve successfully the singular integral 
equations. 

2 The influence of poles of the regular kernel 

The behavior in the solution of singular integral equations in terms of their 
regular kernel may appear in the solution of systems of singular integral 
equations when an integral equation is eliminated and the problem is reduced to 
a system with modified kernels and/or in the case when there is interaction of 
boundaries and a complex pole appears in the regular kernel. 
     A simple example of the above case is the antiplane shear crack under 
constant loading equal to 1 and approaching perpendicularly either the interface 
of a bimaterial plane, or the straight boundary of an elastic half-plane. If ε  and 
a  are the distances of the transverse-crack tips from the longitudinal straight 
boundary, the problem is governed by a system of SIEs, one along the crack and 
the other along the interface. Eliminating the integral along the infinite interface 
the problem is reduced to the following Cauchy-type singular integral equation: 
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together with the condition: 
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    It is observed the influence of the boundary in the kernel, and a nearby 
singularity appeared in (1) and (2). The dimensionless stress intensity factors at 
the crack tips ( )E t ε=  and ( )A t a= , are given by 
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     The stress intensity factors may also be obtained [3] from the following 
closed-form expressions: 
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where ( )E k  and ( )K k  elliptic integrals.               

     As the distance ε  tends to zero, EK  tends to infinity like 1 2 ogε ε− , while 

AK  tends to the value of the stress intensity factor of an equivalent edge crack. 
For the same problem the asymptotic expressions for the stress intensity factors 
at ( )E t ε=  and ( )1A t a= = , are given by [4]: 
 

( ) ( ) ( ) ( )[ ],21211 35.221221212121 sssss
E OssK −−−+−− ++−−−= εεελ  

 ( ) ( ) ( )[ ],21812 44342221 sss
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where the quantity s  is given in terms of the shear modulus 1µ  and 2µ  by: 

 .10,cos <<= ss λπ                                (7) 

 
     Another interesting problem is that of a crack approaching the interface of a 
bimaterial plane under plane stress or plane strain conditions. Eliminating the 
singular integral equation along the interface, it is obtained [5] 
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     In relations (8) and (9), iκ  ( )1,2i =  are Muskhelishvili’s elastic constants, 

expressed in terms of Poisson’s ratio ( )1,2i iν =  of the corresponding half plane. 
It is also observed the influence of the eliminating boundary and a nearby 
singularity is appeared in (8). The asymptotic expression of the stress intensity 
factor ( )EK t ε=  obtained by Atkinson [4], is given by: 
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where kA  are constants independent of ε , and ks  are the first N -real roots of 
the equation: 
 

 ( ) .01cos2 2 =+−+ γβπα ss                                    (13) 

 
     It must be noted that the above equation gives also the eigenvalues of an 
infinite crack going perpendicularly to an interface as before. In the case where 
the material 2 is the air ( )2 0µ = , the asymptotic expressions of EK  and AK  
take the form: 
 

 ( ) ,11~,~~ 21 εεε ogKKogKK AAAE +=−                     (14)  

 

where AK  being the stress intensity factor of an edge crack in a half plane 
subjected to the same loading. 
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     As a particular example let us consider the case of two collinear cracks 
( ),a ε− −  and ( )0,b , i.e. the distance between the nearest tips of the collinear 

cracks is ε . If we represent by different symbols, 1ω  and 2ω  the quantity 

( )+ −Φ −Φ , (i.e. the distributions of dislocations) in either crack, it is obtained 
the following system of singular integral equations: 
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where for the sake of simplicity we have assumed that uniformly distributed 
loads ( )2,1=ipi  are applied to either crack. Furthermore, the following 

equations, ensuring the single-valuedness of 1ω  and 2ω , must be taken into 
account: 
 

( ) ( ) .0,0
0 21 == ∫∫

−

−
dxxdxx

b

a
ωω

ε
                          (16) 

                                               

Solving the first integral of the first of equations (15) with respect to 1ω  and 
substituting it into the second of the second of equations (15), we obtain, after 
some algebra, the following singular integral equation: 
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     This integral equation should be supplemented by the second of 
equations (16). It is worthwhile noting that the kernel of the second integral in 
equation (17) is a regular one, possessing a nearby pole at 2x ε= − . 
Consequently, the equation may be solved by the conventional method, i.e. by 
taking ( )2 xω  in the following form: 
 

( ) ( ) ( ) ,0,2121
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where ( )q x  is a regular function. Such a procedure may give reliable results if 
ε  is sufficiently large, but if ε  tends to zero the method fails to yield reliable 
results. This is due to the fact that the functions ( )1 xω  and ( )2 xω  are equal to 

the difference of limiting values ( )+ −Φ −Φ  of Muskhelishvili’s complex 

potential ( )zΦ , which for this particular problem is of the form: 
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where the constants 1c , 2c , 3c  could be determined by the conditions of single-

valuedness (16). Consequently, the function ( )q x  must be written, as follows: 
 

 ( ) ( ) ( ) ( ) ,0,1
2121 bxxqaxxxq ≤≤++= −−ε                 (20) 

 

with ( )xq1 , a fully regular function. 
     It is obvious from the last relation, that ( )q x , for small values of ε , takes 

significant values in the vicinity of 0=x . Especially, the stress intensity factor 
( )0K  corresponding to the tip with 0=x  which is proportional to ( )0q , has a 

factor 21−ε .  

3 Applications 

As application consider the singular integral equation 
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     The Gauss-Chebyshev integration rule of the first kind [6] does not converge 
for 1c << . In order to have a good convergence, the proposed interpolatory 
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formulas [10] in the case of Gauss-Chebyshev of the second kind, is applied to 
the regular term 
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Substituting (23) into (21), we have finally 
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where ( )nT t  and ( )1nU t−  are the Chebyshev  polynomials of the first and 
second kind [6], respectively. 
     Taking into consideration (24) and (22) a linear system results, whose 
solution gives the exact value ( ) ( )1q t ≡  with machine accuracy for 2n ≥ . 
 

4 Conclusions 

From the previous study it is deduced that, in many problems frequently 
encountered in the Boundary Element Method, the solution g  of the singular 
integral equation is influenced by other (and perhaps weaker) singularities than 
the already known singularities, existing at the ends of the integration interval. 
     A difficult problem that may appear in the solution of singular integral 
equations arises from the singularities that the regular kernel may possess. The 
poles of the regular kernel are due to the interaction of the boundaries of a body 
with a very small distance between them. The above problem continues to exist 
when a boundary is eliminated (see relation (9)). 
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     Problems where the singular integral equations have regular kernels with 
poles very close to the integration interval appear in the case of a crack parallel 
and near to a boundary, in the case of the antiplane shear crack, etc. (Section 2). 
    In the case that the regular kernel has poles very close to the integration 
interval ( )1c << , the classical Gauss integration rule is impossible to 
approximate the correct result for a few integration points (Section 3). It is 
observed that increasing the number of integration points the results for the error 
of the regular kernel do not improve. This is due to the resulted functional 
equation which does not represent with a “tolerant” precision the singular 
integral equation. The convergence is succeeded if only the modified weight 
quadrature rule which introduces modified weights, is used [10]. The proposed 
quadrature may be applied for any degree of polynomial because it has been 
proved [10] that it converges uniformly to the exact value of the integral with the 
nearby singularity. 
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