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ABSTRACT 
The purpose of this work is to build, train and evaluate a deep learning-based model to forecast 
tropospheric ozone levels hourly, up to twenty-four hours ahead, using data gathered from the automatic 
air quality monitoring system in the metropolitan region of Vitória city, Espírito Santo (ES), Brazil. 
Observational data of air pollutant concentrations and meteorological parameters were used as the input 
variables of the model once they represented the state of the atmospheric fluid in terms of its properties 
and chemical composition throughout the time. Several topologies of multilayer perceptron neural 
networks were tried and evaluated using statistics of the predictions over unseen data. The best 
architecture was compared with reference models and the results showed that deep learning models can 
be successfully applied to hourly forecasting of ozone concentrations for urban areas. Once such models 
are fitted to the data, the forecasting procedure has a very low computational cost, meaning that it can 
be used as an alternative approach in comparison with numerical modelling systems, which require 
much more computational power. 
Keywords:  air quality forecasting, ozone, neural networks, deep learning. 

1  INTRODUCTION 
Ozone (O3) is a secondary pollutant in the troposphere and one of the photochemical oxidants 
causing air quality problems. It is formed from chemical reactions between gases emitted by 
natural and anthropogenic sources, such as nitrogen oxides and volatile organic compounds 
in the presence of solar radiation. O3 can irritate the respiratory system, reduce lung capacity, 
and aggravate asthma problems [1]. Moreover, it can damage plants and affect agricultural 
production [2]. The World Health Organization (WHO) air quality guidelines provide 
thresholds for health-harmful pollution levels and the 2005 publication sets the recommended 
value for ozone concentration at 100 µg/m³ for a daily maximum 8-hour average [3]. 
Therefore, it is important to develop a powerful forecasting model that could help authorities 
and the population to take preventive measures and avoid imminent health risks, even before 
the recommended limits are reached. 

2  DATA 
The data used in the experiments is publicly available and was gathered from the Automatic 
Air Quality Monitoring Network (Rede Automática de Monitoramento da Qualidade do  
Ar – RAMQAr) owned by the State Institute of Environment and Water Resources of Espírito 
Santo (Instituto Estadual de Meio Ambiente e Recursos Hídricos do Espírito Santo – IEMA-
ES). The monitoring station chosen for this study is located in Cariacica, a city in the 
metropolitan region of Vitória, ES, Brazil. This station measures hourly averages of  
the twelve atmospheric pollutant concentrations and meteorological parameters displayed  
on Table 1. 
     Data from the years 2001 to 2015 were collected and treated to eliminate records with 
invalid or missing measurements in one or more sensors. Furthermore, only valid data and 
hourly sequences with at least twenty-four consecutive samples were kept in order to make 
possible the generation of ozone concentration ground truth targets, required on supervised 
machine learning algorithms for the model fitting. These steps discarded most part of the 

Air Pollution XXVII  129

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and the Environment, Vol 236, © 2019 WIT Press

doi:10.2495/AIR190131



data, including all the measurements from the years 2007, 2009, 2010 and 2013, resulting in 
a data set with 30,492 samples and their corresponding targets. Fig. 1 shows the amount of 
useful data by year and month. 

Table 1:  Parameters measured in Cariacica’s air quality monitoring station. 

Parameter 
Parameter characteristics 

Type Unit 
Particulate matter below 10µm (PM10) Atmospheric pollutant (µg/m³) 
Total suspended particulate matter Atmospheric pollutant (µg/m³) 

Sulphur dioxide (SO2) Atmospheric pollutant (µg/m³) 

Nitrogen monoxide (NO) Atmospheric pollutant (µg/m³) 

Nitrogen dioxide (NO2) Atmospheric pollutant (µg/m³) 

Nitrogen oxides (NOx) Atmospheric pollutant (µg/m³) 

Carbon monoxide (CO) Atmospheric pollutant (µg/m³) 

Ozone (O3) Atmospheric pollutant (µg/m³) 

Temperature Meteorological (ºC) 

Humidity Meteorological (%) 

Scalar wind direction Meteorological (º) 

Scalar wind speed Meteorological (m/s) 
 

 
(a) 

 
(b) 

Figure 1:    Histograms showing the distribution of useful data by time period. (a) Number 
of samples by year; and (b) Number of samples by month. 
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     In the machine learning domain, one of the main objectives is to create computational 
models with the ability to generalize well the extracted attributes to new data. Poor 
generalization is often characterized by overfitting, and a common method to avoid that is to 
evaluate a model by splitting a data set into two. The first one is the training set, on which 
the model is built and optimized. The second is the test set, on which the finished model is 
evaluated with unseen data [4]. 
     For this research, 22,987 data points from the years 2001 to 2005 were separated for the 
training and validation set, and the remaining 7,505 data points from the years 2006, 2008, 
2011, 2012, 2014 and 2015 were used as test data. This procedure was made in order to 
guarantee that the two batches of data have samples for all months, days of a month, days of 
a week and hours of a day. 

3  METHODS AND MODELLING 
The modelling of ozone fluctuations can be made through two types of models: deterministic 
or stochastic. Deterministic models use several equations to represent the atmosphere 
behaviour and thus forecast the ozone concentrations in a limited domain. Due to the 
complexity of this process, developing and maintaining them are expensive tasks and 
demands a large amount of computational power, since it has to process many chemical  
and physical interactions between diverse parameters like emissions, meteorology and land 
cover. Stochastic models, otherwise, have a simpler implementation because they try to 
formulate a mathematical relationship between the input and output variables based on the 
detection of some patterns [5]. Once such models are fitted to the data, the predictions are 
made using few computational resources. 
     Artificial neural networks are one type of stochastic models and, in the deep learning field, 
there are currently many different architectures available for implementation, being essential 
to examine which one best fits the problem that needs to be solved. Previous works used 
recurrent neural networks (RNN) to predict daily maximum concentrations of tropospheric 
ozone in the city of Palermo, Italy [6], and in the Mexicali (Mexico)-Calexico (USA) border 
area [7]. In Biancofiore et al. [8], RNN models were applied to predict O3 concentration at 
time t+Δt, where Δt can be 1, 3, 6, 12, 24 and 48 h. A convolutional neural network (CNN) 
was employed in Eslami et al. [9] to predict the hourly ozone concentration on each day using 
parameters from the previous day. Eight separated multilayer perceptron (MLP) networks 
were used in Agirre et al. [10] to forecast the values of the variables O3(t+k), being k = 1, 2, 
…, 8 h, at two rural stations located in the Autonomous Community of the Basque Country 
(North Central Spain). An MLP predictor was built in Tamas et al. [11] using one single 
output to forecast O3 concentration 24 hours ahead in Corsica, France, in order to be able to 
anticipate pollution peaks formation. In Coman et al. [5] two MLP models were evaluated. 
The “dynamic” model used a cascade of 24 multilayer perceptrons arranged so that each MLP 
feeds the next one, and the “static” model was a classical single MLP with 24 outputs. For 
both configurations, the outputs were ozone concentrations for a 24 h horizon. 
     The present research focus on multilayer perceptron neural network models, due to its 
simplicity and large application for short-term forecasts. These networks have universal 
function approximation capabilities, with applicability in non-linear problems and ability to 
generalize to unseen data, being effective for prediction purposes [12]. However, prior 
studies that used this type of network to forecast hourly concentrations of ozone aim attention 
on MLPs with one single hidden layer, which can lead to models with limited representational 
power. Moreover, few of them uses a single model to forecast hourly ozone concentrations 
for all time steps ahead in a 24 h horizon. The proposed model employs this approach, since 
it can take advantage of a shared internal representation for all the forecasts and obtain a 
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better generalization of the problem. Additionally, in the performed simulations the best 
results were achieved with deeper network topologies. 
     Multilayer perceptron networks have a flexible topology and among their main parameters 
are the number of layers and the number of neurons in each layer. At least three layers are 
required: an input layer, a hidden layer, and an output layer. The definition of the number of 
layers and neurons is variable, and the best composition is problem-specific [13]. 
     Since the model objective is to predict tropospheric ozone levels hourly, up to  
twenty-four hours ahead, the output layer of the proposed model is composed by twenty-four 
neurons, one for each hour in advance. Several network designs were tested varying the 
number of inputs, hidden layers and nodes in each hidden layer. Besides, different nonlinear 
activation functions were experimented on nodes in the hidden layers, keeping the output 
neurons with linear activation function. In order to choose a good set of parameters for the 
training procedure, some optimization algorithms and values of learning rate, batch size and 
L2 regularization strength were tried. 
     The generated models were evaluated using the training data set with a 5-fold  
cross-validation. In this type of cross-validation, the data set is divided into parts of the same 
size. One part forms the validation set and the other parts form the training set. This process 
is repeated for each part of the data, and the combination of tests is used to make a reliable 
estimate of the model error [4]. 
     The models’ performances were measured based on statistics such as the mean absolute 
error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), Pearson’s 
correlation coefficient (r), and regression coefficient (R²). These metrics are described in the 
following equations: 
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where 𝑂 is the observed value, 𝑂 is the mean of all observed values, 𝐹 is the forecasted 
value, 𝐹 is the mean of all forecasted values and 𝑛 is the number of samples. 
     Table 2 summarizes the topology and characteristics of the MLP neural network that 
achieved the best results in the metrics evaluated. The training of this network used the  
Feed-forward Backpropagation algorithm with Adadelta optimizer, learning rate of 1.0, batch 
size of 4.0, L2 regularization strength of 2.10-5 and mean squared error as the loss function. 

3.1  Data preparation 

The best obtained model has eighteen inputs, composed by six temporal variables and by the 
twelve parameters measured in the air quality station. The wind representation was converted  
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Table 2:  Multilayer perceptron neural network chosen topology. 

Layers 
Topology 

Neurons Activation function Trainable parameters 

Input 18 N/A 0 

1st Hidden layer 15 ReLU 285 

2nd Hidden layer 185 ReLU 2,960 

3rd Hidden layer 250 ReLU 46,500 

4th Hidden layer 200 ReLU 50,200 

5th Hidden layer 225 ReLU 45,225 

6th Hidden layer 185 ReLU 41,810 

Output 24 Linear 4,464 
 
from scalar values of direction and speed to vector components U and V, using eqns (6) and 
(7). This transformation was made because the scalar representation could mislead the model, 
since direction values close to 0º or to 360º indicate that the wind is blowing in  
the same direction, although these values are numerically distant 

 𝑈 ൌ 𝑠𝑝𝑒𝑒𝑑 ∗ sinሺሺ270 െ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛ሻሺ
గ

ଵ଼
ሻሻ , (6) 

 𝑉 ൌ 𝑠𝑝𝑒𝑒𝑑 ∗ cosሺሺ270 െ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛ሻሺ
గ

ଵ଼
ሻሻ . (7) 

     As indicated by other works [10], [11], the use of periodical variables, as sine and cosine 
functions, representing the time cycles, lead to better results in predict ozone concentrations. 
Therefore, the following temporal inputs were used: 

 sin (2π (60 h + m)/1440), cos (2π (60 h + m)/1440), where h = 0, 1, 2, …, 23 is the 
hour of the day and m = 0, 1, 2, …, 59 is the minute of the hour; 

 sin (2πd/7), cos (2πd/7), where d = 0, 1, 2, …, 6 is the day of the week with 0 
representing Sunday and 6 representing Saturday; 

 sin (2πy/12), cos (2πy/12), where y = 1, 2, …, 12 is the month of the year. 

     Before model fitting, all inputs and their ground truth targets were normalized between 
 -1 and 1. This procedure changes the data to a common scale, avoiding that one input have 
excessive importance in consequence of its value range [11]. Once the output of the model is 
obtained, the variables are de-normalized. 

3.2  Reference models 

To measure the efficiency of the proposed neural network, two models were used for 
reference. The first one is called Persistence model and is commonly used as a baseline to 
evaluate the performance of a forecasting model. In this predictor, the forecasts for all time 
steps ahead are set as the current value, which can be expressed mathematically as  
y(t+Δt) = y(t), where y is the forecast target and t is time [14]. 
     The second reference model is composed by a group of twenty-four linear regressors, each 
one responsible to predict a different time step of the next 24 hours of ozone concentration. 
The regressors are based on multiple linear regression and were fitted using the same inputs 
and targets as the MLP model. Regularization of L1 type was used in the models training, 
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technique also known as Lasso Regression [15]. Several regularization parameters, which 
defines the regularization strength, were evaluated using a 5-fold cross-validation over the 
training data set and the parameter that produced the best performance for each regressor  
was chosen. 

3.3  Computational tools 

All computational experiments were implemented using the Python language. Experiments 
with MLP neural networks were performed using the TensorFlow platform through its 
Keras high-level API (Application Programming Interface), and the Scikit-learn machine 
learning library was used to evaluate the linear regression model. 

4  RESULTS 
A comparison between the metrics of evaluated ozone forecasting models, using the test data 
set, is shown in Table 3. Values close to 0.0 are best for the MAE and MSE, values close to 
0.0% are satisfactory for the MAPE, and values close to 1.0 are adequate for the R² and r. A 
Pearson’s correlation coefficient of −1.0 implies a negative linear correlation between the 
forecasted and the ground truth values, and a value of 0.0 implies that there is no linear 
correlation between these variables [14]. 

Table 3:  Comparison table between ozone forecasting models using performance metrics 
over the test data set. 

Model 
Performance metrics 

MSE MAE r R² MAPE 

Persistence 295.19 12.90 0.384 0.148 113.08 

Lasso 126.02 8.73 0.692 0.479 90.10 

MLP 101.75 7.68 0.770 0.593 70.55 

     The values of the metrics introduced on Table 3 refers to the models as a whole, 
considering all the 24 predictions at the same time. Thus, the proposed multilayer perceptron 
is a very effective model, surpassing the reference models in all considered metrics. The 
persistence model obtained the worst performance, as expected due to its simplicity. Tables 
4 and 5 presents the statistics for some forecasting horizons of the MLP model and of the 
Lasso linear model, respectively. 
     With exception of the predictions for the first hour ahead, where the Lasso model has 
slightly better results, the neural network outperforms the linear model in all other time 
horizons. This is shown on Fig. 2 using as reference the mean squared error and the Pearson’s 
correlation coefficient (r). Besides, the prediction errors of the MLP have a more stable 
behaviour along the forecasted time steps. 
     The model accuracy is graphically shown in Figs 3 and 4, where ozone concentration 
forecasts are displayed for 1 hour ahead and 24 hours ahead in a period of approximately  
7 days of measurements. The blue lines represent the actual ozone concentrations and the 
orange lines represent predictions of ozone concentrations. Fig. 3 demonstrates a period in 
the beginning of June 2006, which represents the end of autumn season in the south 
hemisphere. On the other hand, the Fig. 4 display a period in the end of December 2014 and 
beginning of January 2015, which represents the start of summer season. 
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Table 4:  Multilayer perceptron performance metrics over the test data set for some 
forecasting horizons. 

Forecast horizon 
Multilayer perceptron performance metrics 

MSE MAE r R² MAPE 

T+1 42.90 4.94 0.910 0.829 41.14 

T+2 63.37 5.93 0.863 0.745 51.10 

T+3 77.46 6.61 0.829 0.688 57.65 

T+6 99.42 7.56 0.774 0.599 67.39 

T+9 110.52 8.01 0.746 0.557 72.44 

T+12 114.09 8.19 0.741 0.549 75.13 

T+15 113.53 8.23 0.742 0.551 76.20 

T+18 111.69 8.16 0.748 0.559 75.81 

T+21 106.72 7.97 0.757 0.574 75.84 

T+24 101.50 7.77 0.768 0.590 76.73 

Table 5:  Lasso linear model performance metrics over the test data set for some 
forecasting horizons. 

Forecast horizon 
Lasso linear model performance metrics 

MSE MAE r R² MAPE 

T+1 34.90 4.26 0.924 0.855 34.23 

T+2 74.28 6.54 0.831 0.691 61.31 

T+3 103.40 7.94 0.755 0.571 79.04 

T+6 141.71 9.43 0.641 0.411 98.89 

T+9 138.04 9.23 0.653 0.426 93.60 

T+12 125.95 8.80 0.695 0.483 88.08 

T+15 137.99 9.25 0.656 0.431 97.88 

T+18 147.52 9.58 0.626 0.392 102.67 

T+21 134.72 9.12 0.669 0.448 98.68 

T+24 105.80 7.92 0.755 0.570 78.69 
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(a) 

 
(b) 

Figure 2:    Comparison between MLP and Lasso predictions for each hour ahead. (a) Using 
mean squared error; and (b) Using Pearson’s correlation coefficient. 

 
(a) 

 
(b) 

Figure 3:    Multilayer perceptron predictions for a seven-day period in June 2006.  
(a) Predictions 1 hour ahead; and (b) Predictions 24 hours ahead. 
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(a) 

 
(b) 

Figure 4:    Multilayer perceptron predictions for a seven-day period between December 
2014 and January 2015. (a) Predictions 1 hour ahead; and (b) Predictions 24 
hours ahead. 

5  CONCLUSIONS 
The results indicated a reasonable performance for the proposed forecasting model, which 
can be used by authorities and citizens to take preventive measures that avoid imminent 
health risks due to O3 exposure. Moreover, it has been shown that deep learning techniques 
can be successfully applied to hourly forecasting of ozone concentrations in urban areas. 
Once such models are trained and fit to the data, the inference process, i.e. the forecasting 
procedure, has a very low computational cost, meaning that it can be used as an alternative 
approach in comparison with numerical modelling systems, which require much more 
computational power. 
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