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Abstract 

Atmospheric air pollution turbulent fluxes can be assumed proportional to the 
mean concentration gradient. This assumption, along with the equation of 
continuity, leads to the advection-diffusion equation.  Moreover, large eddies are 
able to mix scalar quantities in a manner that is counter to the local gradient. In 
this work we present an analytical solution of the three-dimensional steady state 
advection-diffusion equation, considering nonlocal turbulence closure using the 
Integral Transform Technique (GILTT). Numerical results and statistical 
comparisons with experimental data are presented. 
Keywords: air pollution modelling, analytical solutions, advection-diffusion 
equation, nonlocal closure, integral transform. 

1 Introduction 

In the last years, special attention has been given to the issue of searching 
analytical solutions for the advection-diffusion equation in order to simulate the 
pollutant dispersion in the Atmospheric Boundary Layer (ABL).  We are aware 
of the existence of analytical solutions in the literature, but for specific and 
particular problems. Among them we mention the works [1–6]. In fact, all these 
solutions are valid for very specialized practical situations with restrictions on 
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wind and eddy diffusivities vertical profiles. Costa et al. [7] presented a semi-
analytical solution of the multidimensional advection-diffusion equation for 
more realistic physical scenario using an integral formulation. The solution is 
valid for a limited ABL and general wind and eddy diffusivity vertical profiles, 
but expressed by a stepwise function [8, 9]  
     Finally a general two-dimensional solution without any restriction in the 
spatial function of wind and eddy diffusion coefficients was presented by [10, 
11]. The solving methodology was the Generalized Integral Laplace Transform 
Technique (GILTT) that is an analytical series solution including the solution of 
an associate Sturm-Liouville problem, expansion of the pollutant concentration 
in a series in terms of the attained eigenfunction, replacement of this expansion 
in the advection-diffusion equation and, finally, taking moments. This procedure 
leads to a set of differential ordinary equations that is solved analytically by 
Laplace transform technique. A complete review of the GILTT method is given 
in [12].  More recently the three-dimensional GILTT solution (3D-GILTT) 
considering local closure of the turbulence was presented by Buske et al. [13]. 
The idea of solution is the application of the integral transform in the y-direction 
and then the resultant two-dimensional problem is solved following the previous 
works. No approximation is made along the solution derivation so that is an 
exact solution except for the round-off error.  
     In this work we take a step forward assuming a three-dimensional problem 
with nonlocal closure of the turbulent diffusion. The problem of closing the 
turbulence in the advection-diffusion equation is modified considering a generic 
equation for the turbulent diffusion. The countergradient term in the turbulence 
closure made additional terms to appear in the advection-diffusion equation and 
these terms are related to the asymmetrical transport in the convective boundary 
layer. This new equation is solved by the 3D-GILTT method. Numerical results 
and statistical comparisons with experimental data are presented. 

2 The advection-diffusion equation and the 3D-GILTT 
method 

The advection-diffusion equation of air pollution in the atmosphere is essentially 
a statement of conservation of the suspended material and it can be written as: 
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where ܿҧ denotes the average concentration of a passive contaminant (g/m3), 
,തݑ ҧݒ , ഥݓ  are the mean wind (m/s) components along the axis x, y and z, 
respectively and S is the source term. The terms  ݑ′ܿ ′തതതതത, ݒ ′ܿ ′തതതതത, ݓ ′ܿ ′തതതതത represent, 
respectively, the turbulent fluxes of contaminants (g/sm2) in the longitudinal, 
crosswind and vertical directions.  
     Observe that eqn. (1) has four unknown variables (the concentration ܿҧ and 
turbulent fluxes) which lead us to the known turbulence closure problem. One of 
the most widely used closures for eqn. (1), is based on the gradient transport 
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hypothesis (or K-theory) which, in analogy with the Fick’s law of molecular 
diffusion, assumes that turbulence causes a net movement of material down the 
gradient of material concentration at a rate which is proportional to the 
magnitude of the gradient [14]. So: 
 

ܿ′ݑ  ′തതതതത ൌ െܭ௫
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where Kx, Ky, Kz  are the Cartesian components of eddy diffusivity (m2/s) in the 
x, y and z directions, respectively. In the first order closure all the information on 
the turbulence complexity is contained in the eddy diffusivities. 
     The eqn. (2), combined with the continuity equation of mass, leads to the 
advection-diffusion equation. For a Cartesian coordinate system we rewrite the 
advection-diffusion equation like [15]: 
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     The simplicity of the K-theory of turbulent diffusion has led to the 
widespread use of this theory as mathematical basis for simulating pollutant 
dispersion (open country, urban, photochemical pollution, etc.). But K-closure 
has its own limits. In contrast to molecular diffusion, turbulent diffusion is scale-
dependent. This means that the rate of diffusion of a cloud of material generally 
depends on the cloud dimensions and the intensity of turbulence. As the cloud 
grows, larger eddies are incorporated in the expansion process, so that a 
progressively larger fraction of turbulent kinetic energy is available for the cloud 
expansion.  
     Another problem is that the down-gradient transport hypothesis is 
inconsistent with observed features of turbulent diffusion in the upper portion of 
the mixed layer, at convective cases where countergradient material fluxes are 
known to occur [16]. Because countergradient fluxes are thought to be indicative 
of boundary layer scale eddies, as opposed to small scale ones, such fluxes are 
often called non-local fluxes. Local K-theory is a method for parameterize the 
effects of turbulent mixing based on how small eddies will mix quantities along a 
local gradient of the transported quantity 
     Already some decades ago it was noted that in the upper part of convectively 
driven boundary layers, the flux of scalars are counter to the gradient of the mean 
scalar profile [17]. The mean potential temperature gradient and the flux change 
sign at different levels introducing a certain region in the convective boundary 
layer where they have the same sign. This was in contrast with the common view 
in first order turbulent closure that turbulent diffusion is down gradient. In order 
to describe diffusion also in these regions, Ertel [18] and Deardoff [17, 19] 
proposed to modify the usual applied flux-gradient relationship in K-theory 
approach according to 
 

ݓ  ′ܿ ′തതതതത ൌ െܭ௭ ቀ
డ௖ҧ

డ௭
െ  ቁ (4)ߛ

 

where ߛ represents the countergradient term. 
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     Many schemes and parameterization for counter-gradient term have been 
developed in literature. Here we use the parameterization proposed by van Dop 
and Verver [20] which is based on the work of Wyngaard and Weil [21]:  
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where Sk is the skewness of the vertical turbulent velocity (w’), that is, ܵ௞ ൌ

ݓ ′ଷതതതത/൫ݓ ′ଶതതതത൯
ଷ/ଶ

 ௪ is the vertical turbulent velocity standard deviation (m/s) andߪ ,

lwT  is the Lagrangian time scale (s). The second term in the operator (in the 

brackets) represents the nonlocal counter-gradient term. 
     Using eqns. (4) and (5) the turbulence closure problem is solved without obey 
the Fick’s law, being called non-Fickian closure (known also as nonlocal 
closure). The non-Fickian closure allows the investigation of more energetic 
eddies in different heights and the effect of the asymmetric transport in the 
computation of the pollutant concentration considering in a more complete way 
the structure of the turbulent dispersion. 
     Applying the above equations in (1) the advection-diffusion equation, in the 
Eulerian framework for a Cartesian coordinate system in which the x direction 
coincide with that of the average wind, is written as: 
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where ߚ ൌ 0.55S୩ߪ୵T୪୵, for 0 < z < h, 0 < y < Ly and x > 0. In this work we 
neglect the diffusion component  ܭ௫ because we assume that the advection is 
dominant in the x-direction and also consider that ܭ௬ has only dependence on the 
z-direction. Equation (6) is subjected to the boundary conditions:  
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and to the source condition:  
 

,തܿሺ0ݑ  ,ݕ ሻݖ ൌ ݕሺߜܳ െ ݖሺߜ଴ሻݕ െ  ௦ሻ (6c)ܪ
 

where now h  is the boundary layer height (m), Ly is far away from the source, Hs 
is the height of the source (m), Q is the emission rate (g/s) and δ is the Dirac 
delta function.  
     In order to solve problem (6) by the GILTT method [12, 13], we initially 
apply the integral transform technique in the y variable. To this end, we expand 
the pollutant concentration as: 
 

 ܿҧሺݔ, ,ݕ ሻݖ ൌ ∑ ܿҧ௠ሺݔ, ሻݖ ௠ܻሺݕሻெ
௠ୀ଴  (7) 
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where ௠ܻሺݕሻ are a set of orthogonal eigenfunctions, given by ௠ܻሺݕሻ ൌ
cos ሺߣ௠ݕሻ, and ߣ௠ ൌ  

௠గ

௅೤
 (m=0,1,2,...) are respectively the set of eigenvalues. 

     To determine the unknown coefficient ܿҧ௠ሺݔ,  ሻ we substitute eqn. (7) inݖ

eqn. (6) and after apply the operator ׬ ௡ܻሺݕሻ݀ݕ
௅೤
଴  . After some algebra, this 

procedure leads to the set of M + 1 two-dimensional diffusion equations: 
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     The problem (8) is then solved analytically by the GILTT method following 
the works [12, 22, 23]. We pose the solution of problem (8) in the form: 
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where ߞ௟ሺݖሻ are a set of orthogonal eigenfunctions, given by ߞ௟ሺݖሻ ൌ cos ሺߟ௟ݖሻ, 
and ߟ௟ ൌ  

௜గ

௛ 
 (l=0,1,2,...) are respectively the set of eigenvalues. 

     Replacing eqn. (9) in eqn. (8) and taking moments, we get the first order 
matrix differential equation: 
 

 
ௗ

ௗ௫ ௠ܲሺݔሻ ൅ .ܩ  ௠ܲሺݔሻ ൌ 0 (10) 
 

for m = 0:M, where ௠ܲሺݔሻ is the column vector whose components are ܿҧ௠,௟ for l 
= 0:L. The matrix G is defined as G = B1

-1B2. The entries of matrices B1 and B2 
are, respectively, given by: 
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     Similar procedure leads to the boundary condition of problem (10): 
 

௠ܲሺ0ሻ ൌ ܿҧ௠,௟ሺ0ሻ ൌ  ଴ሻݕ௦ሻܻሺܪ௝ሺߞ ଵିܣܳ
 

where A-1 is the inverse of matrix A having the entry: ܽ௟,௝ ൌ ׬ ݖሻ݀ݖ௝ሺߞሻݖ௟ሺߞതݑ
௛
଴ .  

Likewise the work [12], we solve the problem (10) in a similar manner applying 
Laplace transform and diagonalization getting 
 

 ௠ܲതതതതሺݏሻ ൌ ܺሺܫݏ ൅  (11) ߦሻିଵܦ
 

where ߦ ሺߦ ൌ ܺିଵ ௠ܲሺ0ሻሻ is found from the equation ܺߦ ൌ ௠ܲሺ0ሻ, and their 
values are calculated by decomposition LU, whose computational cost is smaller 
than an inversion of matrix. The elements of the matrix (sI+D) have the form 
ሼݏ ൅ ݀௜ሽ where ݀௜ are the eigenvalues of the matrix G and the elements of 

Air Pollution XX  63

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 1 , © 2012 WIT Press57



ሺܫݏ ൅  ሻିଵ areܦ
ଵ

௦ାௗ೔
 whose transformed inverse of Laplace is ݁ିௗ೔௫. Let be G(x)  

the diagonal matrix whose elements are ݁ିௗ೔௫ the final solution is then given by: 
 

 ௠ܲሺݔሻ ൌ  (12) ߦሻݔሺܩܺ
 

     Finally, using the formula (9) we obtained the solution of the 2D problem, 
where ߞ௟ሺݖሻ= cos ሺߟ௟ݕሻ and ܿҧ௠,௟ሺݔሻ comes from the solution of the transformed 
problem given by eqn. (10). Once ܿҧ௠ሺݔ,  ሻ is known we are in a position to writeݖ
the final three-dimensional solution of problem (6) which is given by eqn. (7). 
     This solution is named as 3D-GILTT (three-dimensional GILTT solution). 
     We promptly realize that the advection-diffusion equation governed by 
Fickian flow [13] is readily obtained by making the parameter ߚ, responsible for 
nonlocal transport, to vanish (ߚ ՜ 0).  

3 The turbulent parameterization  

The literature reports many, greatly varied formulae, for the calculation of the 
vertical turbulent diffusion coefficient [14].  As an example of application of our 
new solution we tested the following vertical and lateral diffusion 
parameterization suggested by Degrazia et al. [24] for convective conditions: 
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qv 16.4  ;   16.0vmf . More, k is the von Karman constant (k = 0.4),  כݓ is 

the convective velocity scale, ߪఔ is the Eulerian standard deviation of the 
longitudinal turbulent velocity, ݍఔ is the stability function, ߰ఌ is the non-
dimensional molecular dissipation rate function and ሺ ௠݂ሻఔ is the peak 
wavelength of the turbulent velocity spectra.  
     In order to evaluate the vertical wind velocity variance ߪ௪ and Lagrangian 
time scale ௟ܶ௪ in ߚ ൌ 0.55S୩ߪ୵T୪୵ the following expressions were  
used [25–27]: 
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wavelength of the turbulent velocity spectra. For the vertical wind velocity
 variance: 
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where ߰ is  the molecular dissipation of turbulent velocity [28]: 
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     The wind speed profile can be described by a power law expressed as 
follows [29]: 
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where  ݑ௭തതത and  ݑଵതതത are the mean wind speeds horizontal to heights z and z1 and n 
is an exponent that is related to the intensity of turbulence [30]. 
     Thus, in this study we introduce the eddy diffusivities, countergradient 
expressions and the wind profile described above in the 3D-GILTT model to 
calculate the ground-level concentration of emissions released from an elevated 
continuous source point in an unstable ABL.   

4 Application to meteorological scenario 

In order to show the performance of the present solution of the advection–
diffusion equation we have applied the model using the Copenhagen 
experimental datasets. The Copenhagen field campaign [31] took place in the 
suburbs of Copenhagen, where SF6 tracer was released without buoyancy from a 
tower at a height of 115 m and collected at ground-level on arcs located 2000, 
4000, and 6000 meters from the release point. The site is mainly residential with 
a roughness length of 0.6m. The meteorological conditions during the dispersion 
experiments ranged from moderately unstable to convective.  Tracer releases 
typically started up 1 h before the tracer sampling and stopped at the end of the 
sampling period.  
     We have evaluated the performances of the solutions using the above data 
sets with the ABL parameterisations presented and for two different values for 
the skewness: Sk =1, as suggested by van Dop and Verver [20] and Sk =0.6, as 
suggested by Wyngaard and Weil [21].  
     Figure 1 shows the observed and predicted scatter diagram of centerline 
ground-level concentrations normalized with the emission source rate (c/Q).  
This figure shows that a good agreement is obtained between experimental data 
and the model considering the local and nonlocal closure of turbulence. 
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Figure 1: Observed and predicted scatter diagram of ground-level centerline 

concentrations using the 3D-GILTT approach for the Copenhagen 
experiment. Dotted lines indicate a factor of two. 

     Further, we use standard statistical indices in order to compare the quality of 
the new approach. Table 1 presents some performances evaluations of the model 
results for the above experiment using the statistical evaluation procedure 
described by Hanna [32] and defined in the following way: 

     NMSE (normalized mean square error) = 
oppo CCCC 2)(  , 

     FA2 = fraction of data (%, normalized to 1) for 2)/(5.0  op CC , 

     COR (correlation coefficient) = 
poppoo CCCC ))((  , 

     FB (fractional bias) = )(5.0 popo CCCC  , 

     FS (fractional standard deviations) = )(5.0)( popo  , 

where the subscripts o and p refer to observed and predicted quantities, 
respectively, and the overbar indicates an averaged value. The statistical index 
FB says if the predicted quantities underestimate or overestimate the observed 
ones. The statistical index NMSE represents the model values dispersion in 
respect to data dispersion. The best results are expected to have values near to 
zero for the indices NMSE, FB and FS, and near to 1 in the indices COR and 
FA2. The statistical indices point out that a reasonable agreement is obtained 
between experimental data and the 3D-GILTT model for Fickian (Sk =0) and 
non-Fickian cases (Sk =0.6 and Sk =1). To obtain the results we used L=60 
eigenvalues in the z summation and M=10 in the y summation. 
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Table 1:  Statistical results obtained with the 3D-GILTT method compared 
with the Copenhagen experiment. 

3D-GILTT NMSE COR FA2 FB FS 
Sk =0 0.15 0.91 1.00 0.20 0.17 

Sk =0.6 0.12 0.91 1.00 0.12 0.09 
Sk =1 0.14 0.88 1.00 0.08 -0.01 

5 Conclusions 

We have presented a general solution of the three-dimensional steady-state 
advection-diffusion equation considering nonlocal turbulence closure, which can 
be applied in operative models for describing turbulent dispersion of many scalar 
quantities, such as air pollution, radioactive material, heat and so on. In order to 
show the performances of the solution in actual scenarios, we introduced some 
parameterisations of the ABL and compared the values predicted by the solution 
with data collected during the well-known Copenhagen experiment. The analysis 
of the results shows a good agreement between the computed values against the 
experimental ones. 
     The differences among the experimental data do not depend on the solution of 
the diffusion equation, but on the equation itself, which is only a model of reality 
and on the parameterisation used. Also these results show that, when using 
models, while they are rather sophisticated instruments that ultimately reflect the 
current state of knowledge on turbulent transport in the atmosphere, the results 
they provide are subject to a considerable margin of error. This is due to various 
factors, including in particular the uncertainty of the intrinsic variability of the 
atmosphere. Models, in fact, provide values expressed as an average, i.e. a mean 
value obtained by the repeated performance of many experiments, while the 
measured concentrations are a single value of the sample to which the ensemble 
average provided by models refer. This is a general characteristic of the theory of 
atmospheric turbulence and is a consequence of the statistical approach used in 
attempting to parameterize the chaotic character of the measured data.   
     For the above considerations, an analytical solution can be useful in 
evaluating the performances of numerical method (that solve numerically the 
advection diffusion equation) that could compare their results, not only against 
experimental data but, in an easy way, with the solution itself in order to check 
numerical errors without the uncertainties presented above. 
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