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ABSTRACT 
The addition of nanoscale particles into the fluid is recently a common technology used in several 
industrial processes, since it has been proved that by introducing particles into the working fluid, the 
heat transfer characteristics can be improved crucially. However, the understanding of fundamental 
characteristics of nanofluid saturated porous media domains is still limited. The paper presents a 
numerical study of free convection in a porous enclosure saturated with a nanofluid. A single-phase 
mathematical model has been employed assuming that the suspension of nanoparticles in fluid can be 
modelled as a new fluid with effective properties. Fluid flow in porous media is modelled with the 
macroscopic Navier–Stokes equations, where the governing parameters are averaged over the 
representative elementary volume. The obtained set of partial differential equations is solved with use 
of the numerical code based on the Boundary Element Method, which was primarily developed for pure 
fluid flow applications and was already proved to be efficient for solving several problems of fluid 
mechanics. Numerical results for different values of governing parameters are obtained, focusing on 
the effect of different volume fractions of added nanoparticles and different inclination angles of the 
porous enclosure on the overall heat transfer through porous domain. 
Keywords: porous media, nanofluid, natural convection, Brinkman–Forchheimer formulation, 
Boundary Element Method. 

1  INTRODUCTION 
Convective heat transfer in porous media domains has been studied extensively because of 
its wide range of applications in engineering, nature and environment, such as e.g. 
groundwater flow, insulation systems, and heat exchangers. In published studies, different 
mathematical models have been used to describe buoyancy driven flow in porous medium. 
The Darcy’s law is most commonly used mathematical model for the governing momentum 
equation and is valid for the laminar flow regime (Re < 10) where the velocities are low and 
the viscous forces dominate over inertial forces. Extension of the governing momentum 
equations has been made by analogy with the Navier–Stokes equations with addition of the 
Brinkman term in order to consider the viscous diffusion and the Forchheimer term to study 
the inertia effects on the free convection [1]. 
     The mixture of nano-scale particles (e.g. metals, oxides, carbides) and a base fluid (e.g. 
water, oil or ethylene glycol) is called a nanofluid and is an innovative technique for 
improving the efficiency of cooling and heating processes in several industrial applications 
such as refrigerators, electronics, biomedicine. Comprehensive reviews for the recent 
improvements in this field can be found in [2] and [3]. Nanofluids can be mathematically 
modelled using a single-phase or two-phase approach. In the single-phase approach it is 
assumed, that the nanoparticles act in the same way as water molecules and have the same 
local velocities. The assumption is valid only for low concentrations of nanoparticles (2.5–
5%) and for solid particles of size < 1–100 nm [4]. However, the two-phase model is more 
suitable choice to describe two-phase mixtures of nanoparticles and base fluid, since it is 
physically more correct. This model takes into account some mechanisms which describe 
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relative motion between the fluid and nanoparticles, such as Brownian diffusion, 
thermophoresis [5]. 
     Several numerical techniques have been used to solve the heat transfer problem in porous 
media and to simulate the fluid flow, however, the most commonly used are the Finite 
Element Method, the Finite Difference Method and the Finite Volume Method. Recently, the 
Boundary Element Method (BEM) has been used as an alternative to other methods, mainly 
because it is very efficient in case when solving potential problems of fluid mechanics e.g. 
inviscid fluid flow, heat conduction. In this case the mathematical transformation of the 
governing set of nonlinear partial differential equations results in boundary integral equations 
only. However, when dealing with non-homogenous and nonlinear problems as e.g. 
diffusion-convection problems, the domain integrals also occur in the integral representation, 
which demands the extension of the classical BEM in order to additionally deal the problem 
within the domain. The main issue in this case is the evaluation of the domain matrices, which 
are fully populated and unsymmetrical and require a lot of storage space. The numerical 
algorithm used in the present study is separated into the single- and sub-domain BEM. The 
kinematic part is solved by the single domain BEM, while the sub-domain BEM is used to 
solve the equations of the diffusion-advection type [6]. 
     In the present study, some numerical results for the problem of convective flow in an 
inclined porous enclosure saturated with Cu nanofluid are presented, gained using an 
algorithm based on the BEM. The fluid flow in porous media is modelled using the 
Brinkman–Forchheimer momentum equation. A single-phase nanofluid mathematical model 
is used, since only low concentrations of nanoparticles (2.5–5%) are considered. The 
numerical code was proven to be efficient on several applications of pure fluid flow e.g. [6], 
[7] as well as porous media flow [8]–[10]. The influence of the inclination angle and 
nanoparticle volume fraction on the convective heat transfer have been analyzed. 

2  GOVERNING EQUATIONS 
The problem of convective flow in nanofluid-saturated porous media can be mathematically 
described with macroscopic conservation equations for mass, momentum and energy which 
are suitable averaged over the representative elementary volume [11]. The conservation of 
mass for incompressible fluid is given with the continuity equation: 

∇ሬሬ⃑ ∙ �⃑� ൌ 0,                                                           (1) 

where �⃑� is volume averaged velocity vector. 
     The Brinkman–Forchheimer momentum equation is used, which reads as: 
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where 𝜙 is porosity, 𝑡 time, 𝑝 pressure, 𝑇 temperature, �⃑� gravitational acceleration, 𝐾 
permeability, 𝐹 Forchheimer coefficient, 𝜌௡௙ density of nanofluid, 𝛽௡௙, nanofluid thermal 
expansion coefficient and 𝜇௡௙ dynamic viscosity of nanofluid. There are two viscous and two 
inertial terms in the momentum equation: 

 The Brinkman viscous term (third on the right hand side) considers the viscous forces 
and enables to satisfy the non-slip boundary conditions on a boundary. It is analogous to 
the Laplacian term in the Navier–Stokes equations written for pure fluid flow [1]. 

 The Darcy term (fourth on the right hand side) is a linear term where the relationship 
between the velocity field and pressure difference is linked through the fluid viscosity 
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and permeability 𝐾 which depends on the geometry of the porous medium and is a 
second order tensor in general. When assuming an isotropic porous media, the 
permeability is a scalar. 

 The Forchheimer term (last on the right hand side) describes the nonlinear influences at 
higher velocities. 𝐹 is the Forchheimer coefficient which is depending on the nature of 
porous medium. According to Ergun model it is given as [1]: 

𝐾 ൌ
థయௗ೛

మ
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where 𝑎 and 𝑏 are Ergun’s constants with values 𝑎 ൌ 150 and 𝑏 ൌ 1.75, while 𝑑௣ is the 
average particle size of the bed. 
     Finally, the energy equation can be written as: 
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where 𝜎 is the specific heat ratio 𝜎 ൌ 𝜙 ൅ ሺ1 െ 𝜙ሻ൫𝜌𝑐௣൯
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are heat capacitances of solid and nanofluid phase, respectively. Furthermore, 𝑘௘ is the 
effective conductivity of porous medium. It is assumed, that the thermal properties of solid 
matrix and the nanofluid are identical [12], resulting in 𝜎 ൌ 1 and 𝑘௘ ൌ 𝑘௡௙. 
     Governing eqns (1), (2) and (3) can be converted into a nondimensional form with 
introduction of the following dimensionless variables: 
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The parameters in the above expressions are: 𝑣଴ characteristic velocity is given with the 
expression 𝑣଴ ൌ 𝑘௙/ሺ𝜌𝑐௣ሻ௙𝐿, 𝑘௙ is the fluid thermal conductivity, ൫𝜌𝑐௣൯

௙
 is the heat capacity 

for the fluid phase and 𝐿 is the characteristic length. Moreover, 𝑇଴ is characteristic 
temperature 𝑇଴ ൌ ሺ𝑇ଶ െ 𝑇ଵሻ/2 and Δ𝑇 is characteristic temperature difference Δ𝑇 ൌ 𝑇ଶ െ 𝑇ଵ, 
𝑝଴ is the characteristic pressure 𝑝଴ ൌ 1 𝑏𝑎𝑟, while gravitational acceleration is 𝑔଴ ൌ
9.81 𝑚/𝑠ଶ. 
     In addition, the velocity-vorticity formulation of the governing equations is proposed by 
introduction of the vorticity vector, which is by the definition a curl of the velocity field 𝜔ሬሬ⃑ ൌ
∇ሬሬ⃑ ൈ �⃑�. The governing set of equations in nondimensional velocity-vorticity formulation can 
now be written in terms of kinematics equation, the vorticity transport equation and the 
energy equation as: 

∇ଶ�⃑� ൅ ∇ሬሬ⃑ ൈ 𝜔ሬሬ⃑ ൌ 0,                                                     (6) 
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൫�⃑� ∙ ∇ሬሬ⃑ ൯𝑇 ൌ 𝐶஼ ∇ଶ𝑇.                                                    (8) 

In the above equations parameters 𝐶஺, 𝐶஻ and 𝐶஼ are presenting the nanofluid properties and 
are given with expressions: 
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where 𝛼௡௙ is thermal diffusivity of nanofluid, 𝛼௡௙ ൌ 𝑘௡௙/ሺ𝜌𝑐௣ሻ௡௙ and 𝛼௙ thermal diffusivity 
of pure fluid 𝛼௙ ൌ 𝑘௙/ሺ𝜌𝑐௣ሻ௙. The nanofluid properties are obtained using the expressions 
given in Section 2.1. For the simulation of the pure fluid flow, the parameters are 𝐶஺ ൌ 𝐶஻ ൌ
𝐶஼ ൌ 1. Since only steady flow simulations are shown in the present paper, the vorticity and 
energy transport equations are considered without time derivatives (𝜕𝜔ሬሬ⃑ /𝜕𝑡= 𝜕𝑇/𝜕𝑡 ൌ 0). 
     The nondimensional parameters appearing in the momentum equation are: 

 The fluid Rayleigh number 𝑅𝑎் ൌ 𝑔 𝛽் Δ𝑇 𝐿ଷ 𝜌௙ ൫𝜌𝑐௣൯
௙

/ሺ𝜇௙ 𝑘௙ሻ; 

 The Prandtl number 𝑃𝑟 ൌ 𝜇௙ 𝑐௣/𝑘௙; 
 The Darcy number 𝐷𝑎 ൌ 𝐾/𝐿ଶ. 

     Furthermore, the porous Rayleigh number 𝑅𝑎௉ is defined linking the thermal Rayleigh 
number and Darcy number: 

 𝑅𝑎௉ ൌ 𝑅𝑎் ∙ 𝐷𝑎. 

2.1  Nanofluid properties 

Nanofluid properties are given in terms of relations between pure fluid and pure solid 
properties. In all subsequent expressions, the indexes 𝑓 and 𝑠 stand for the fluid and solid 
phase respectively. 
     Firstly, nanofluid solid volume fraction 𝜑 is defined as the ratio between the volume of 
solid particles 𝑉௦ and the whole volume of solid particles and fluid (𝑉௦ ൅ 𝑉௙): 

𝜑 ൌ
௏ೞ

௏ೞା௏೑
.                                                           (10) 

     Relationships between nanofluid and pure fluid properties are described with models. A 
comprehensive review of different models can be found in [3]. In this paper it is assumed, 
that nanoparticles are spherical and all adopted models are valid for the case of small 
temperature gradients. 
     Density 𝜌௡௙ can be given with an expression: 

𝜌௡௙ ൌ ሺ1 െ 𝜑ሻ𝜌௙ ൅ 𝜑𝜌௦.                                               (11) 

The effective dynamic viscosity 𝜇௡௙ can be given according to [13] as: 

𝜇௡௙ ൌ
ఓ೑

ሺଵିఝሻమ.ఱ,                                                         (12) 

where the effective viscosity does not depend on the nanoparticle type. The heat capacitance 
of nanofluid can be given as: 

ሺ𝜌𝑐௣ሻ௡௙ ൌ ሺ1 െ 𝜑ሻሺ𝜌𝑐௣ሻ௙ ൅ 𝜑ሺ𝜌𝑐௣ሻ௦.                                    (13) 

The nanofluid thermal expansion coefficient can be written in a similar way: 

ሺ𝜌𝛽ሻ௡௙ ൌ ሺ1 െ 𝜑ሻሺ𝜌𝛽ሻ௙ ൅ 𝜑ሺ𝜌𝛽ሻ௦,                                     (14) 

taking into account the definition of 𝜌௡௙, it follows: 

22  Advances in Fluid Mechanics XII

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 120, © 2018 WIT Press



𝛽௡௙ ൌ 𝛽௙ ൥
ଵ

ଵା
ሺభషകሻഐ೑

കഐೞ

ఉೞ

ఉ೑
൅

ଵ

ଵା
ക

భషക
ഐೞ
ഐ೑

൩.                                        (15) 

     The effective thermal conductivity 𝑘௡௙ is given with the Wasp model [14] as: 

𝑘௡௙ ൌ 𝑘௙
௞ೞାଶ௞೑ିଶఝሺ௞೑ି௞ೞሻ

௞ೞାଶ௞೑ାఝሺ௞೑ି௞ೞሻ
.                                              (16) 

     Further assumptions for the used model are: the nanoparticles are in thermal equilibrium 
with the base fluid and the non-slip boundary condition is considered. The fluid flow is 
assumed to be laminar, steady, Newtonian and incompressible. The dependency between 
density and temperature can be described with the Boussinesq approximation as: 

𝜌௡௙ ൌ 𝜌଴ ቀ1 െ 𝛽௡௙ሺ𝑇 െ 𝑇଴ሻቁ,                                           (17) 

where index 0 refers to a reference state. 

3  BOUNDARY ELEMENT METHOD 
The BEM based algorithm is used to solve the governing set of nonlinear partial differential 
eqns (6), (7) and (8). In order to determine correct values of boundary vorticity, the algorithm 
is separated into a single-domain and sub-domain parts, where the kinematics equation is 
solved with the single-domain BEM and gives the boundary vorticity values. The sub-domain 
BEM solves the vorticity and energy transport equations for unknown domain vorticity and 
temperature values. The algorithm was primarily developed for pure fluid flow simulations 
[6], [7], and was later adopted for nanofluids [15] as well as for porous media flow 
simulations [8]. The computational scheme results in a fully populated system of equations, 
which limits the maximum grid size due to memory constraints. This drawback can be 
mitigated by use of the fast BEM, where sparse approximation of full matrices are used [16]. 
The main advantage of using the single-domain BEM for the boundary vorticity values is 
that the algorithm conserves mass in complex geometries, which is not the case when using 
velocity derivatives to calculate boundary vorticity values. 
     The main steps of the numerical algorithm can be summarized as follows. At the 
beginning, the velocity and temperature boundary conditions are required, and have to be 
given in terms of Dirichlet and Neumann type. In addition, the temperature and temperature 
flux on the solid walls and the no-slip boundary conditions are prescribed. The vorticity 
boundary conditions are unknown at the beginning and are calculated using the single-
domain BEM on the kinematics equation. The known boundary conditions are used to solve 
the kinematics eqn (6) for the domain velocity values and energy eqn (8) for the temperature 
values within the domain. The vorticity values within the domain are obtained using a sub-
domain BEM on the vorticity transport eqn (7). 

3.1  Integral representation of governing equations 

3.1.1  Kinematics equation 
The unknown boundary vorticity values are obtained using the single-domain BEM on the 
kinematics eqn (6) which has to be written in its tangential form: 
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𝑐൫𝜉൯𝑛ሬ⃑ ൫𝜉൯ ൈ �⃑�൫𝜉൯ ൅ 𝑛ሬ⃑ ൫𝜉൯ ൈ ׬ �⃑�∇ሬሬ⃑ 𝑢∗ ∙ 𝑛ሬ⃑ 𝑑Γ ൌ୻  

𝑛ሬ⃑ ൫𝜉൯ ൈ ׬ �⃑� ൈ ሺ𝑛ሬ⃑ ൈ ∇ሬሬ⃑ ሻ𝑢∗𝑑Γ୻ ൅ 𝑛ሬ⃑ ൫𝜉൯ ൈ ׬ ሺ𝜔ሬሬ⃑ ൈ ∇ሬሬ⃑ 𝑢∗ሻ𝑑Ωஐ ,                     (18) 

where Ω is the computational domain and Γ ൌ 𝜕Ω is the boundary of the domain, 𝑐ሺ𝜉ሻ is 
geometric factor defined as 𝑐൫𝜉൯ ൌ 𝜃/4𝜋, 𝜃 is the inner angle with origin in 𝜉. If 𝜉 lies inside 

the domain, then 𝑐ሺ𝜉ሻ=1, if 𝜉 lies on a smooth boundary, then 𝑐ሺ𝜉ሻ=1/2. Furthermore, 𝑛ሬ⃑  is a 
vector normal to the boundary and 𝑢∗ is the fundamental solution of the Laplace equation 
given as: 

𝑢∗ ൌ
ଵ

ସగቚకሬ⃑ ି௥⃑ቚ
.                                                               (19) 

     In addition, the sub-domain BEM is used on the kinematics eqn (6) in order to calculate 
the domain velocity values. The integral equation reads as: 
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     The main advantage of this formulations is, that the obtained integral equation is without 
the derivatives of the velocity or vorticity fields, which enables that the source point is set to 
function nodes only. The domain velocity values are calculated based on the known boundary 
values of the velocity from the initial boundary conditions, while the domain and boundary 
values of the vorticity are known from the previous iteration. 

3.1.2  Vorticity and energy equations 
In order to derive the integral form of the vorticity and energy equations, the same 
fundamental solution of the Laplace equation as previously is used. The final integral form 
of the vorticity transport equation is: 
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and finally, the integral form of the energy transport equation reads as: 
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     In the above equations 𝑞௝ is a component of vorticity flux, while 𝑞் is a heat flux. In the 
sub-domain BEM method a mesh of the entire domain Ω is made, each mesh element is 
named a subdomain. All equations are written for each of the subdomains. The field functions 
and flux across the boundary and within the domain are interpolated using shape functions. 
The hexahedral subdomains with 27 nodes are used enabling continuous quadratic 
interpolation of field functions. The field functions on each element are interpolated using 
continuous quadratic interpolation, while fluxes are interpolated using the discontinuous 
linear interpolation. With discontinuous interpolation, the definition problems in corners and 
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edges are avoided. The final discrete system of equations is over-determined and solved using 
a least squares solver. 

3.2  Geometry of the problem 

The above developed numerical scheme was tested on an example of two-dimensional 
rectangular inclined porous enclosure, fully saturated with nanofluid. It is assumed, that 
porous medium is nondeformable, isotropic, homogenous and that there is no heat transfer 
between the solid and fluid phase. Two opposite walls are subjected to a temperature 
differences, while other two walls are adiabatic and impermeable. Since the solver is three-
dimensional, zero flux boundary conditions are used to model a 2D problem. Geometry of 
the domain is shown on Fig. 1. 
     Due to applied temperature gradient, density differences are induced, which results in 
appearance of thermal buoyancy force. Consequently, a large vortex in the main part of the 
cavity is produced. 
     The overall heat transfer through porous media is expected to depend on several nanofluid 
and porous media properties, such as porosity, permeability, thermal conductivity, heat 
capacitance, nanofluid solid volume fraction. In order to compare different conditions on the 
heat transfer characteristics, the wall heat flux is calculated, which is given as a dimensionless 
Nusselt number: 

𝑁𝑢 ൌ
௞೙೑

௞೑
׬ ∇ሬሬ⃑ 𝑇 ∙ 𝑛ሬ⃑  𝑑Γ୻ .                                                  (23) 

     The definition is valid for nanofluids as well as for pure fluids, since there the ratio of 
thermal conductivities is 𝑘௡௙/𝑘௙ ൌ 1. 

4  RESULTS AND DISCUSION 
In the example presented in this paper, the Cu nanoparticles are added to the water as a base 
fluid, the properties of both are given in Table 1. 
 

 

Figure 1:  Two-dimensional enclosure with boundary conditions. 
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Table 1:  Thermophysical properties of water and Cu nanoparticles. 

 cp [J/kg K]  [kg/m3] K [W/m K]  [10-5 K-1]  [10-7 m2/s] 
Water 4179 997.1 0.613 21 1.47 

Cu 385 8933 400 1.67 1163 
 
 
     The validation of numerical code has been performed on several examples for different 
geometries and governing parameters. In Table 2 one part of the results is shown in terms of 
Nu values for different governing parameters and compared to study [12]. The results are in 
good agreement with the data from the published study, which confirms accuracy of the 
obtained numerical algorithm. 
     Furthermore, heat transfer and fluid flow characteristics have been studied. The influence 
of the inclination angle and the volume fraction of nanoparticles was investigated. Fig. 2 
shows isotherms for Rap = 1000, Pr = 6.2, Da = 10-6,  = 0.05 and inclination angles 0°, 15°, 
30° and 60°. With increase of the inclination angle, the overall heat transfer decreases, which 
results in weaker convection motion. When  = 0°, thin boundary layers are created in the 
vicinity of the hot and cold walls, almost horizontal isotherms in the core region of the cavity 
are revealing strong convective motion. In case when  = 60°, convection is supressed and 
the isotherms become almost linear. 
     Fig. 3 shows the streamlines for  = 0.4, Rap = 1000, Pr = 6.2, Da = 10-6,  = 0.05 and 
different inclination angles. When  = 0°, a single vortex in the clockwise direction can be 
observed in the flow field, which is a result of applied horizontal temperature differences. 
Increasing the inclination angle ( > 15°), two vortices appear in the middle of the field, and 
are suppressing the convective motion. 
     Fig. 4(a) shows the dependence of Nusselt number values on Rap and inclination angles 
for a Darcy flow regime, when the Darcy number values are low i. e. Da < 10-6. Nusselt 
number values decrease with increase of inclination angles, which is more pronounced at 
higher values of Rap. 
     Furthermore, Figs 4(b), (c) and (d) show the dependence of Nu on inclination angle and 
volume fraction of nanoparticles for Da = 10-6 (Darcy flow), Da = 10-4, and Da = 10-2 

(conduction flow regime). Higher values of nanoparticles volume fraction enhance the 
overall heat transfer through porous media in a conduction regime, when Da > 10-4. On the 
other hand, in the Darcy flow regime Da < 10-6, the addition of nanoparticles suppresses the 
overall heat transfer. 

Table 2:   Nusselt number values for convective flow in nanofluid saturated porous media 
for various governing parameters (Pr = 6.2). 

Da Rap 

=0.4 

=0.0 =0.025 =0.05 

[12] Present [12] Present [12] Present 

10-2 10 1.007 1.008 1.081 1.083 1.160 1.162 

10-2 1000 3.302 3.282 3.370 3.345 3.433 3.400 

10-6 1000 11.867 13.238 11.847 13.131 11.778 12.991 
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(a) (b) 

 

(c) (d) 

Figure 2:    Isotherms for Rap = 1000, Pr = 6.2, Da = 10-6,  = 0.05 and (a)  = 0°; 
(b)  = 15°; (c)  = 30°; (d)  = 60°. 
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(a) (b) 

 

(c) (d) 

Figure 3:    Streamlines for  = 0.4, Rap = 1000, Pr=6.2, Da = 10-6,  = 0.05 and (a)  = 0°; 
(b)  = 15°; (c)  = 30°; (d)  = 60°. 
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(a) (b)

(c) (d)

Figure 4:  Nusselt number values depending on solid volume fraction  and inclination angle 
 for  = 0.4, Pr=6.2 and (a)  = 0.0, Da = 10-6; (b) Rap = 1000, Da = 10-6; 
(c) Rap = 1000, Da = 10-4; (d) Rap = 1000, Da = 10-2. 

5  CONCLUSION 
Numerical study based on BEM of convective heat transfer in a differentially heated inclined 
cavity filled with non-Darcy porous medium fully saturated with nanofluid is presented. 
Effects of nanofluid solid volume fraction and inclination angle on overall heat transfer and 
fluid field for different flow regimes were demonstrated. The addition of nanoparticles into 
a base fluid generally results in higher heat transfer rate. Increasing the solid volume fraction 
of nanoparticles results in higher values of Nusselt numbers in a conduction regime at high 
values of Darcy numbers (Da > 10-4) and low values of Rayleigh numbers (Rap < 100). 
However, in the Darcy flow regime, where Darcy numbers are low (Da < 10-6) and Rayleigh 
numbers high (Rap > 1000), the Nusselt number decrease with increase of the solid volume 
fraction of nanoparticles. The increase of inclination angle decreases the overall heat transfer 
through porous cavity, which can be observed for any value of solid volume fraction of 
nanoparticles. 
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